
KATCP Documentation
Release 0.0+unknown.202102020856

Simon Cross

Feb 02, 2021





Contents

1 Contents 3
1.1 Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Core API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Kattypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
1.4 Low level client API (client) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1.5 Concrete Intermediate-level KATCP Client API (inspecting_client) . . . . . . . . . . . . . . . . . . 118
1.6 Abstract High-level KATCP Client API (resource) . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.7 Concrete High-level KATCP Client API (resource_client) . . . . . . . . . . . . . . . . . . . . . . . 136
1.8 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
1.9 KATCP Server API (server) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
1.10 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
1.11 How to Contribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

2 Indices and tables 199

Python Module Index 201

Index 203

i



ii



KATCP Documentation, Release 0.0+unknown.202102020856

KATCP is a simple ASCII communication protocol layered on top of TCP/IP.

It is developed as a part of the Karoo Array Telescope (KAT) project and used at KAT for the monitoring and control
of hardware devices.

The protocol specification NRF-KAT7-6.0-IFCE-002-Rev5-1.pdf is maintained as an internal memo. The
latest version is Rev5.1. The specification source is hosted here: https://github.com/ska-sa/katcp-guidelines

Contents 1

http://ska.ac.za/
https://github.com/ska-sa/katcp-guidelines


KATCP Documentation, Release 0.0+unknown.202102020856

2 Contents



CHAPTER 1

Contents

1.1 Release Notes

1.1.1 0.9.0

• Add asyncio compatible ioloop to ioloop manager.

1.1.2 0.8.0

• Added bulk sensor sampling feature.

1.1.3 0.7.2

• Support for handling generator expressions in Discrete type.

• Fix handling of strings and bytes in get_sensor in testutils.

• Allow strings or bytes for assert_request_fails and test_assert_request_succeeds function
arguments.

• Handle str type correctly (‘easier’) in testutils.get_sensor for python 2 and python 3.

• Allow bytes and strings in test_sensor_list comparison of sensors.

• Correct handling of floats test_sensor_list.

• black formatting on certain test files.

1.1.4 0.7.1

• All params in future_get_sensor are now cast to byte strings.

• Added tests to test_fake_clients.py and test_inspecting_client.py.

3



KATCP Documentation, Release 0.0+unknown.202102020856

• Ensure testutils method casts expected requests to byte strings.

1.1.5 0.7.0

• Added Python 3 compatibility.

See also CHANGELOG.md for more details on changes.

Important changes for Python 3 compatibility

General notes

The package is now compatible with both Python 2 and 3. The goals of the migration were:

• Do not change the public API.

• Do not break existing functionality for Python 2.

• Ease migration of packages using katcp to Python 3.

Despite these goals, some of the stricter type checking that has been added may force minor updates in existing code.
E.g., using integer for the options of a discrete sensor is no longer allowed.

Asynchronous code is still using tornado in the same Python 2 way. The new Python 3.5 async and await keywords
are not used. The tornado version is also pinned to older versions that support both Python 2 and 3. The 5.x versions
also support Python 2, but they are avoided as some significant changes result in test failures.

The Python future package was used for the compatibility layer. The use of the newstr and newbytes compat-
ibility types was avoided, to reduce confusion. I.e., from builtins import str, bytes is not done.

Docstrings

In docstrings the interpretation of parameter and return types described as “str” has changed slightly. In Python 2 the
str type is a byte string, while in Python 3, str is a unicode string. The str type is referred to as the “native” string
type. In code, native literal strings would have no prefix, for example: "native string", as opposed to explicit
byte strings, b"byte string", and explicit unicode strings, u"unicode string". In the docstrings “bytes”
means a byte string is expected (or returned), “str” means a native string, and “str or bytes” means either type.

Changes to types

As part of the Python 3 compatibility update, note the following:

• katcp.Message. - arguments and mid attributes will be forced to byte strings in all Python versions.
This is to match what is sent on the wire (serialised byte stream). - name: is expected to be a native
string. - repr(): the result will differ slightly in Python 3 - the arguments will be shown as quoted byte
strings. E.g., Python 2: "<Message reply ok (123, zzz)>", vs. Python 3: "<Message reply
ok (b'123', b'zzz')>". In all versions, arguments longer than 1000 characters are now truncated.

• katcp.Sensor. - name, description, units, params (for discrete sensors): __init__ can take byte
strings or native strings, but attributes will be coerced to native strings. - set_formatted, parse_value:
only accept byte strings (stricter checking). - The float and strict_timestamp sensor values are now
encoded using repr() instead of "%.15g". This means that more significant digits are transmitted on the
wire (16 to 17, instead of 15), and the client will be able to reconstruct the exact some floating point value.

4 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Non-ASCII and UTF-8

Prior to these changes, all strings were byte strings, so there was no encoding required. Arbitrary bytes could be used
for message parameters and string sensor values. After these changes, strings sensors and Str types are considered
“text”. In Python 3, UTF-8 encoding will be used when changing between byte strings and unicode strings for “text”.
This has the following effects:

• katcp.Message - the arguments are always using byte strings, so arbitrary bytes can still be sent and
received using this class directly.

• katcp.Sensor - Values for string and discrete sensor types cannot be arbitrary byte strings in Python
3 - they need to be UTF-8 compatible.

• kattypes.Str, kattypes.Discrete, kattypes.DiscreteMulti - These types is still used in
request and reply decorators. - For sending messages, they accept any type of object, but UTF-8 en-
coding is used if values are not already byte strings. - When decoding received messages, “native” strings are
returned.

Keep in mind that a Python 2 server may be communicating with a Python 3 client, so sticking to ASCII is safest. If
you are sure both client and server are on Python 3 (or understand the encoding the same), then UTF-8 could be used.
That is also the encoding option used by the aiokatcp package.

Performance degradation

Adding the compatibility results in more checks and conversions. From some basic benchmarking, there appears to be
up to 20% performance degradation when instantiating message objects.

Benchmark, in ipython:

import random, katcp

args_groups = []
for i in range(1000):

args_groups.append((random.randint(0, 1) == 1,
random.randint(0, 1000),
random.random(),
str(random.random())))

def benchmark():
for args in args_groups:

tx_msg = katcp.Message.reply('foo', *args)
serialised = bytes(tx_msg)
parser = katcp.MessageParser()
rx_msg = parser.parse(serialised)
assert tx_msg == rx_msg

%timeit benchmark()

• Old Py2: 10 loops, best of 3: 23.4 ms per loop

• New Py2: 10 loops, best of 3: 29.9 ms per loop

• New Py3: 25.1 ms ± 86.8 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

1.1. Release Notes 5

https://github.com/ska-sa/aiokatcp


KATCP Documentation, Release 0.0+unknown.202102020856

1.1.6 0.6.4

• Fix some client memory leaks, and add until_stopped methods.

• Increase server MAX_QUEUE_SIZE to handle more clients.

• Use correct ioloop for client AsyncEvent objects.

See also CHANGELOG.md for more details on changes.

Important API changes

Stopping KATCP clients

When stopping KATCP client classes that use a managed ioloop (i.e., create their own in a new thread), the traditional
semantics are to call stop() followed by join() from another thread. This is unchanged. In the case of an
unmanaged ioloop (i.e., an existing ioloop instance is provided to the client), we typically stop from the same thread,
and calling join() does nothing. For the case of unmanaged ioloops, a new method, until_stopped(), has
been added. It returns a future that resolves when the client has stopped. The caller can yield on this future to be
sure that the client has completed all its coroutines. Using this new method is not required. If the ioloop will keep
running, the stopped client’s coroutines will eventually exit. However, it is useful in some cases, e.g., to verify correct
clean up in unit tests.

The new method is available on katcp.DeviceClient and derived classes, on katcp.
inspecting_client.InspectingClientAsync, and on the high-level clients katcp.
KATCPClientResource and katcp.KATCPClientResourceContainer.

An additional change is that the inspecting client now sends a state update (indicating that it is disconnected and not
synced) when stopping. This means high-level clients that were waiting on until_not_synced when the client
was stopped will now be notified. Previously, this was not the case.

1.1.7 0.6.3

• Put docs on readthedocs.

• Better error handling for messages with non-ASCII characters (invalid).

• Increase container sync time to better support large containers.

• Limit tornado version to <5.

• Allow sampling strategy to be removed from cache.

• Improve error messages for DeviceMetaClass assertions.

• Increase server’s message queue length handle more simultaneous client connections.

• Improve Jenkins pipeline configuration.

• Add information on how to contribute to the project.

See also CHANGELOG.md for more details on changes.

1.1.8 0.6.2

• Various bug fixes

• Docstring and code style improvements

6 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

• Bumped the tornado dependency to at least 4.3

• Added the ability to let ClientGroup wait for a quorum of clients

• Added default request-timeout-hint implementation to server.py

• Moved IOLoopThreadWrapper to ioloop_manager.py, a more sensible location

• Added a random-exponential retry backoff process

See also CHANGELOG.md for more details on changes.

1.1.9 0.6.1

• Various bug fixes

• Improvements to testing utilities

• Improvements to various docstrings

• Use katversion to determine version string on install

• Better dependency management using setup.py with setuptools

• Fixed a memory leak when using KATCPResourceContainer

See also CHANGELOG.md for more details on changes.

1.1.10 0.6.0

• Major change: Use the tornado event loop and async socket routines.

See also CHANGELOG.md for more details on changes.

Important API changes

Tornado based event loop(s)

While the networking stack and event loops have been re-implemented using Tornado, this change should be largely
invisible to existing users of the library. All client and server classes now expose an ioloop attribute that is the
tornado.ioloop.IOLoop instance being used. Unless new server or client classes are used or default settings
are changed, the thread-safety and concurrency semantics of 0.5.x versions should be retained. User code that made
use of non-public interfaces may run into trouble.

High level auto-inspecting KATCP client APIs added

The high level client API inspects a KATCP device server and present requests as method calls and sensors as objects.
See Using the high-level client API.

Sensor observer API

The katcp.Sensor sensor observer API has been changed to pass the sensor reading in the observer.update()
callback, preventing potential lost updates due to race conditions. This is a backwards incompatible change. Whereas
before observers were called as observer.update(sensor), they are now called as observer.update(sensor, reading),
where reading is an instance of katcp.core.Reading.

1.1. Release Notes 7



KATCP Documentation, Release 0.0+unknown.202102020856

Sample Strategy callback API

Sensor strategies now call back with the sensor object and raw Python datatype values rather than the sensor name and
KATCP formatted values. The sensor classes have also grown a katcp.Sensor.format_reading() method
that can be used to do KATCP-version specific formatting of the sensor reading.

1.1.11 0.5.5

• Various cleanups (logging, docstrings, base request set, minor refactoring)

• Improvements to testing utilities

• Convenience utility functions in katcp.version, katcp.client, katcp.testutils.

1.1.12 0.5.4

• Change event-rate strategy to always send an update if the sensor has changed and shortest-period has passed.

• Add differential-rate strategy.

1.1.13 0.5.3

Add convert_seconds() method to katcp client classes that converts seconds into the device timestamp format.

1.1.14 0.5.2

Fix memory leak in sample reactor, other minor fixes.

1.1.15 0.5.1

Minor bugfixes and stability improvements

1.1.16 0.5.0

First stable release supporting (a subset of) KATCP v5. No updates apart from documentation since 0.5.0a0; please
refer to the 0.5.0a release notes below.

1.1.17 0.5.0a0

First alpha release supporting (a subset of) KATCP v5. The KATCP v5 spec brings a number of backward incompatible
changes, and hence requires care. This library implements support for both KATCP v5 and for the older dialect. Some
API changes have also been made, mainly in aid of fool-proof support of the Message ID feature of KATCP v5. The
changes do, however, also eliminate a category of potential bugs for older versions of the spec.

8 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Important API changes

CallbackClient.request()

Renamed request() to callback_request() to be more consistent with superclass API.

Sending replies and informs in server request handlers

The function signature used for request handler methods in previous versions of this library were re-
quest_requestname(self, sock, msg), where sock is a raw python socket object and msg is a katcp Message object.
The sock object was never used directly by the request handler, but was passed to methods on the server to send inform
or reply messages.

Before:

class MyServer(DeviceServer):
def request_echo(self, sock, msg):

self.inform(sock, Message.inform('echo', len(msg.arguments)))
return Message.reply('echo', 'ok', *msg.arguments)

The old method requires the name of the request to be repeated several times, inviting error and cluttering code.
The user is also required to instantiate katcp Message object each time a reply is made. The new method passes a
request-bound connection object that knows to what request it is replying, and that automatically constructs Message
objects.

Now:

class MyServer(DeviceServer):
def request_echo(self, req, msg):

req.inform(len(msg.arguments)))
return req.make_reply('ok', *msg.arguments)

A req.reply() method with the same signature as req.make_reply() is also available for asyncronous reply
handlers, and req.reply_with_message() which takes a Message instance rather than message arguments.
These methods replace the use of DeviceServer.reply().

The request object also contains the katcp request Message object (req.msg), and the equivalent of a socket object
(req.client_connection). See the next section for a description of client_connection.

Using the server methods with a req object in place of sock will still work as before, but will log deprecation warnings.

Connection abstraction

Previously, the server classes internally used each connection’s low-level sock object as an identifier for the
connection. In the interest of abstracting out the transport backend, the sock object has been replaced by a
ClientConnectionTCP object. This object is passed to all server handler functions (apart from request han-
dlers) instead of the sock object. The connection object be used in the same places where sock was previously used. It
also defines inform(), reply_inform() and reply() methods for sending Message objects to a client.

Backwards incompatible KATCP V5 changes

Timestamps

Excerpted from NRF-KAT7-6.0-IFCE-002-Rev5.pdf:

1.1. Release Notes 9



KATCP Documentation, Release 0.0+unknown.202102020856

All core messages involving time (i.e. timestamp or period specifications) have changed from using mil-
liseconds to seconds. This provides consistency with SI units. Note also that from version five timestamps
should always be specified in UTC time.

Message Identifiers (mid)

Excerpted from NRF-KAT7-6.0-IFCE-002-Rev5.pdf:

Message identifiers were introduced in version 5 of the protocol to allow replies to be uniquely associated
with a particular request. If a client sends a request with a message identifier the server must include the
same identifier in the reply. Message identifiers are limited to integers in the range 1 to 231 1 inclusive.
It is the client’s job to construct suitable identifiers – a server should not assume that these are unique.
Clients that need to determine whether a server supports message identifiers should examine the #version-
connect message returned by the server when the client connects (see Section 4). If no #version-connect
message is received the client may assume message identifiers are not supported.

also:

If the request contained a message id each inform that forms part of the response should be marked with
the original message id.

Support for message IDs is optional. A properly implemented server should never use mids in replies unless the
client request has an mid. Similarly, a client should be able to detect whether a server supports MIDs by checking
the #version-connect informs sent by the server, or by doing a !version-list request. Furthermore, a KATCP v5 server
should never send #build-state or #version informs.

Server KATCP Version Auto-detection

The DeviceClient client uses the presence of #build-state or #version informs as a heuristic to detect pre-v5
servers, and the presence of #version-connect informs to detect v5+ servers. If mixed messages are received the client
gives up auto-detection and disconnects. In this case preset_protocol_flags() can be used to configure the
client before calling start().

Level of KATCP support in this release

This release implements the majority of the KATCP v5 spec; excluded parts are:

• Support for optional warning/error range meta-information on sensors.

• Differential-rate sensor strategy.

1.2 Core API

1.2.1 Client

Two different clients are provided: the BlockingClient for synchronous communication with a server and the
CallbackClient for asynchronous communication. Both clients raise KatcpClientError when exceptions
occur.

The DeviceClient base class is provided as a foundation for those wishing to implement their own clients.

10 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

BlockingClient

class katcp.BlockingClient(host, port, tb_limit=20, timeout=5.0, logger=<logging.Logger ob-
ject>, auto_reconnect=True)

Methods

BlockingClient.
blocking_request(msg[, . . . ])

Send a request message and wait for its reply.

BlockingClient.
callback_request(msg[, . . . ])

Send a request message.

BlockingClient.
convert_seconds(time_seconds)

Convert a time in seconds to the device timestamp
units.

BlockingClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

BlockingClient.
enable_thread_safety()

Enable thread-safety features.

BlockingClient.future_request(msg[,
. . . ])

Send a request message, with future replies.

BlockingClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

BlockingClient.handle_message(msg) Handle a message from the server.
BlockingClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
BlockingClient.handle_request(msg) Dispatch a request message to the appropriate

method.
BlockingClient.
inform_build_state(msg)

Handle katcp v4 and below build-state inform.

BlockingClient.inform_version(msg) Handle katcp v4 and below version inform.
BlockingClient.
inform_version_connect(msg)

Process a #version-connect message.

BlockingClient.is_connected() Check if the socket is currently connected.
BlockingClient.join([timeout]) Rejoin the client thread.
BlockingClient.next()
BlockingClient.
notify_connected(connected)

Event handler that is called whenever the connection
status changes.

BlockingClient.
preset_protocol_flags(. . . )

Preset server protocol flags.

BlockingClient.request(msg[, use_mid]) Send a request message, with automatic message ID
assignment.

BlockingClient.running() Whether the client is running.
BlockingClient.send_message(msg) Send any kind of message.
BlockingClient.send_request(msg) Send a request message.
BlockingClient.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
BlockingClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
BlockingClient.start([timeout]) Start the client in a new thread.
BlockingClient.stop(*args, **kwargs) Stop a running client.
BlockingClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
Continued on next page

1.2. Core API 11



KATCP Documentation, Release 0.0+unknown.202102020856

Table 1 – continued from previous page
BlockingClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
BlockingClient.
unhandled_request(msg)

Fallback method for requests without a registered
handler.

BlockingClient.
until_connected(**kwargs)

Return future that resolves when the client is con-
nected.

BlockingClient.
until_protocol(**kwargs)

Return future that resolves after receipt of katcp pro-
tocol info.

BlockingClient.
until_running([timeout])

Return future that resolves when the client is run-
ning.

BlockingClient.
until_stopped([timeout])

Return future that resolves when the client has
stopped.

BlockingClient.
wait_connected([timeout])

Wait until the client is connected.

BlockingClient.
wait_disconnected([timeout])

Wait until the client is disconnected.

BlockingClient.
wait_protocol([timeout])

Wait until katcp protocol information has been re-
ceived from server.

BlockingClient.wait_running([timeout]) Wait until the client is running.

bind_address
(host, port) where the client is connecting

blocking_request(msg, timeout=None, use_mid=None)
Send a request message and wait for its reply.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

callback_request(msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,
use_mid=None)

Send a request message.

Parameters msg : Message object

The request message to send.

reply_cb : function

The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)

inform_cb : function

The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)

12 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

user_data : tuple

Optional user data to send to the reply and inform callbacks.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

convert_seconds(time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety()
Enable thread-safety features.

Must be called before start().

future_request(msg, timeout=None, use_mid=None)
Send a request message, with future replies.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns A tornado.concurrent.Future that resolves with: :

reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

handle_inform(msg)
Handle inform messages related to any current requests.

Inform messages not related to the current request go up to the base class method.

Parameters msg : Message object

The inform message to dispatch.

handle_message(msg)
Handle a message from the server.

Parameters msg : Message object

1.2. Core API 13



KATCP Documentation, Release 0.0+unknown.202102020856

The Message to dispatch to the handler methods.

handle_reply(msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.

Parameters msg : Message object

The reply message to dispatch.

handle_request(msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object

The request message to dispatch.

inform_build_state(msg)
Handle katcp v4 and below build-state inform.

inform_version(msg)
Handle katcp v4 and below version inform.

inform_version_connect(msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

join(timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify_connected(connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

14 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request(msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message

use_mid : bool or None, default=None

Returns mid : string or None

The message id, or None if no msg id is used

If use_mid is None and the server supports msg ids, or if use_mid is :

True a message ID will automatically be assigned msg.mid is None. :

if msg.mid has a value, and the server supports msg ids, that value :

will be used. If the server does not support msg ids, KatcpVersionError :

will be raised. :

running()
Whether the client is running.

Returns running : bool

Whether the client is running.

send_message(msg)
Send any kind of message.

Parameters msg : Message object

The message to send.

send_request(msg)
Send a request message.

Parameters msg : Message object

The request Message to send.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_ioloop(ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start(timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

1.2. Core API 15



KATCP Documentation, Release 0.0+unknown.202102020856

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop(*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform(msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object

The inform message that wasn’t processed by any handlers.

unhandled_reply(msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object

The reply message that wasn’t processed by any handlers.

unhandled_request(msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

The request message that wasn’t processed by any handlers.

until_connected(**kwargs)
Return future that resolves when the client is connected.

until_protocol(**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running(timeout=None)
Return future that resolves when the client is running.

Notes

Must be called from the same ioloop as the client.

until_stopped(timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

16 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected(timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected(timeout=None)
Wait until the client is disconnected.

Parameters timeout : float in seconds

Seconds to wait for the client to disconnect.

Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol(timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns received : bool

Whether protocol information was received

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running(timeout=None)
Wait until the client is running.

1.2. Core API 17



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

CallbackClient

class katcp.CallbackClient(host, port, tb_limit=20, timeout=5.0, logger=<logging.Logger ob-
ject>, auto_reconnect=True)

Methods

CallbackClient.
blocking_request(msg[, . . . ])

Send a request message and wait for its reply.

CallbackClient.
callback_request(msg[, . . . ])

Send a request message.

CallbackClient.
convert_seconds(time_seconds)

Convert a time in seconds to the device timestamp
units.

CallbackClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

CallbackClient.
enable_thread_safety()

Enable thread-safety features.

CallbackClient.future_request(msg[,
. . . ])

Send a request message, with future replies.

CallbackClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

CallbackClient.handle_message(msg) Handle a message from the server.
CallbackClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
CallbackClient.handle_request(msg) Dispatch a request message to the appropriate

method.
CallbackClient.
inform_build_state(msg)

Handle katcp v4 and below build-state inform.

CallbackClient.inform_version(msg) Handle katcp v4 and below version inform.
CallbackClient.
inform_version_connect(msg)

Process a #version-connect message.

CallbackClient.is_connected() Check if the socket is currently connected.
CallbackClient.join([timeout]) Rejoin the client thread.
CallbackClient.next()
CallbackClient.
notify_connected(connected)

Event handler that is called whenever the connection
status changes.

CallbackClient.
preset_protocol_flags(. . . )

Preset server protocol flags.

Continued on next page

18 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 2 – continued from previous page
CallbackClient.request(msg[, use_mid]) Send a request message, with automatic message ID

assignment.
CallbackClient.running() Whether the client is running.
CallbackClient.send_message(msg) Send any kind of message.
CallbackClient.send_request(msg) Send a request message.
CallbackClient.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
CallbackClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
CallbackClient.start([timeout]) Start the client in a new thread.
CallbackClient.stop(*args, **kwargs) Stop a running client.
CallbackClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
CallbackClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
CallbackClient.
unhandled_request(msg)

Fallback method for requests without a registered
handler.

CallbackClient.
until_connected(**kwargs)

Return future that resolves when the client is con-
nected.

CallbackClient.
until_protocol(**kwargs)

Return future that resolves after receipt of katcp pro-
tocol info.

CallbackClient.
until_running([timeout])

Return future that resolves when the client is run-
ning.

CallbackClient.
until_stopped([timeout])

Return future that resolves when the client has
stopped.

CallbackClient.
wait_connected([timeout])

Wait until the client is connected.

CallbackClient.
wait_disconnected([timeout])

Wait until the client is disconnected.

CallbackClient.
wait_protocol([timeout])

Wait until katcp protocol information has been re-
ceived from server.

CallbackClient.wait_running([timeout]) Wait until the client is running.

bind_address
(host, port) where the client is connecting

blocking_request(msg, timeout=None, use_mid=None)
Send a request message and wait for its reply.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

1.2. Core API 19



KATCP Documentation, Release 0.0+unknown.202102020856

callback_request(msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,
use_mid=None)

Send a request message.

Parameters msg : Message object

The request message to send.

reply_cb : function

The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)

inform_cb : function

The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)

user_data : tuple

Optional user data to send to the reply and inform callbacks.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

convert_seconds(time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety()
Enable thread-safety features.

Must be called before start().

future_request(msg, timeout=None, use_mid=None)
Send a request message, with future replies.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns A tornado.concurrent.Future that resolves with: :

reply : Message object

The reply message received.

informs : list of Message objects

20 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

A list of the inform messages received.

handle_inform(msg)
Handle inform messages related to any current requests.

Inform messages not related to the current request go up to the base class method.

Parameters msg : Message object

The inform message to dispatch.

handle_message(msg)
Handle a message from the server.

Parameters msg : Message object

The Message to dispatch to the handler methods.

handle_reply(msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.

Parameters msg : Message object

The reply message to dispatch.

handle_request(msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object

The request message to dispatch.

inform_build_state(msg)
Handle katcp v4 and below build-state inform.

inform_version(msg)
Handle katcp v4 and below version inform.

inform_version_connect(msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

join(timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify_connected(connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

1.2. Core API 21



KATCP Documentation, Release 0.0+unknown.202102020856

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request(msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message

use_mid : bool or None, default=None

Returns mid : string or None

The message id, or None if no msg id is used

If use_mid is None and the server supports msg ids, or if use_mid is :

True a message ID will automatically be assigned msg.mid is None. :

if msg.mid has a value, and the server supports msg ids, that value :

will be used. If the server does not support msg ids, KatcpVersionError :

will be raised. :

running()
Whether the client is running.

Returns running : bool

Whether the client is running.

send_message(msg)
Send any kind of message.

Parameters msg : Message object

The message to send.

send_request(msg)
Send a request message.

Parameters msg : Message object

The request Message to send.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

22 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

set_ioloop(ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start(timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop(*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform(msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object

The inform message that wasn’t processed by any handlers.

unhandled_reply(msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object

The reply message that wasn’t processed by any handlers.

unhandled_request(msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

The request message that wasn’t processed by any handlers.

until_connected(**kwargs)
Return future that resolves when the client is connected.

until_protocol(**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running(timeout=None)
Return future that resolves when the client is running.

1.2. Core API 23



KATCP Documentation, Release 0.0+unknown.202102020856

Notes

Must be called from the same ioloop as the client.

until_stopped(timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected(timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected(timeout=None)
Wait until the client is disconnected.

Parameters timeout : float in seconds

Seconds to wait for the client to disconnect.

Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol(timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns received : bool

Whether protocol information was received

24 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running(timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

AsyncClient

class katcp.AsyncClient(host, port, tb_limit=20, timeout=5.0, logger=<logging.Logger object>,
auto_reconnect=True)

Implement async and callback-based requests on top of DeviceClient.

This client will use message IDs if the server supports them.

Parameters host : string

Host to connect to.

port : int

Port to connect to.

tb_limit : int, optional

Maximum number of stack frames to send in error traceback.

logger : object, optional

Python Logger object to log to. Default is a logger named ‘katcp’.

auto_reconnect : bool, optional

Whether to automatically reconnect if the connection dies.

timeout : float in seconds, optional

Default number of seconds to wait before a callback callback_request times out. Can
be overridden in individual calls to callback_request.

Examples

1.2. Core API 25



KATCP Documentation, Release 0.0+unknown.202102020856

>>> def reply_cb(msg):
... print "Reply:", msg
...
>>> def inform_cb(msg):
... print "Inform:", msg
...
>>> c = AsyncClient('localhost', 10000)
>>> c.start()
>>> c.ioloop.add_callback(
... c.callback_request,
... katcp.Message.request('myreq'),
... reply_cb=reply_cb,
... inform_cb=inform_cb,
... )
...
>>> # expect reply to be printed here
>>> # stop the client once we're finished with it
>>> c.stop()
>>> c.join()

Methods

AsyncClient.blocking_request(msg[,
timeout, . . . ])

Send a request message and wait for its reply.

AsyncClient.callback_request(msg[,
. . . ])

Send a request message.

AsyncClient.convert_seconds(time_seconds)Convert a time in seconds to the device timestamp
units.

AsyncClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

AsyncClient.enable_thread_safety() Enable thread-safety features.
AsyncClient.future_request(msg[, time-
out, . . . ])

Send a request message, with future replies.

AsyncClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

AsyncClient.handle_message(msg) Handle a message from the server.
AsyncClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
AsyncClient.handle_request(msg) Dispatch a request message to the appropriate

method.
AsyncClient.inform_build_state(msg) Handle katcp v4 and below build-state inform.
AsyncClient.inform_version(msg) Handle katcp v4 and below version inform.
AsyncClient.inform_version_connect(msg)Process a #version-connect message.
AsyncClient.is_connected() Check if the socket is currently connected.
AsyncClient.join([timeout]) Rejoin the client thread.
AsyncClient.next()
AsyncClient.notify_connected(connected) Event handler that is called whenever the connection

status changes.
AsyncClient.preset_protocol_flags(protocol_flags)Preset server protocol flags.
AsyncClient.request(msg[, use_mid]) Send a request message, with automatic message ID

assignment.
Continued on next page

26 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 3 – continued from previous page
AsyncClient.running() Whether the client is running.
AsyncClient.send_message(msg) Send any kind of message.
AsyncClient.send_request(msg) Send a request message.
AsyncClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
AsyncClient.start([timeout]) Start the client in a new thread.
AsyncClient.stop(*args, **kwargs) Stop a running client.
AsyncClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
AsyncClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
AsyncClient.unhandled_request(msg) Fallback method for requests without a registered

handler.
AsyncClient.until_connected(**kwargs) Return future that resolves when the client is con-

nected.
AsyncClient.until_protocol(**kwargs) Return future that resolves after receipt of katcp pro-

tocol info.
AsyncClient.until_running([timeout]) Return future that resolves when the client is run-

ning.
AsyncClient.until_stopped([timeout]) Return future that resolves when the client has

stopped.
AsyncClient.wait_connected([timeout]) Wait until the client is connected.
AsyncClient.wait_disconnected([timeout]) Wait until the client is disconnected.
AsyncClient.wait_protocol([timeout]) Wait until katcp protocol information has been re-

ceived from server.
AsyncClient.wait_running([timeout]) Wait until the client is running.

bind_address
(host, port) where the client is connecting

blocking_request(msg, timeout=None, use_mid=None)
Send a request message and wait for its reply.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

callback_request(msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,
use_mid=None)

Send a request message.

Parameters msg : Message object

1.2. Core API 27



KATCP Documentation, Release 0.0+unknown.202102020856

The request message to send.

reply_cb : function

The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)

inform_cb : function

The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)

user_data : tuple

Optional user data to send to the reply and inform callbacks.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

convert_seconds(time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety()
Enable thread-safety features.

Must be called before start().

future_request(msg, timeout=None, use_mid=None)
Send a request message, with future replies.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns A tornado.concurrent.Future that resolves with: :

reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

handle_inform(msg)
Handle inform messages related to any current requests.

28 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Inform messages not related to the current request go up to the base class method.

Parameters msg : Message object

The inform message to dispatch.

handle_message(msg)
Handle a message from the server.

Parameters msg : Message object

The Message to dispatch to the handler methods.

handle_reply(msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.

Parameters msg : Message object

The reply message to dispatch.

handle_request(msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object

The request message to dispatch.

inform_build_state(msg)
Handle katcp v4 and below build-state inform.

inform_version(msg)
Handle katcp v4 and below version inform.

inform_version_connect(msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

join(timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify_connected(connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

1.2. Core API 29



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request(msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message

use_mid : bool or None, default=None

Returns mid : string or None

The message id, or None if no msg id is used

If use_mid is None and the server supports msg ids, or if use_mid is :

True a message ID will automatically be assigned msg.mid is None. :

if msg.mid has a value, and the server supports msg ids, that value :

will be used. If the server does not support msg ids, KatcpVersionError :

will be raised. :

running()
Whether the client is running.

Returns running : bool

Whether the client is running.

send_message(msg)
Send any kind of message.

Parameters msg : Message object

The message to send.

send_request(msg)
Send a request message.

Parameters msg : Message object

The request Message to send.

set_ioloop(ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start(timeout=None)
Start the client in a new thread.

30 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop(*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform(msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object

The inform message that wasn’t processed by any handlers.

unhandled_reply(msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object

The reply message that wasn’t processed by any handlers.

unhandled_request(msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

The request message that wasn’t processed by any handlers.

until_connected(**kwargs)
Return future that resolves when the client is connected.

until_protocol(**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running(timeout=None)
Return future that resolves when the client is running.

Notes

Must be called from the same ioloop as the client.

until_stopped(timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

1.2. Core API 31



KATCP Documentation, Release 0.0+unknown.202102020856

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected(timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected(timeout=None)
Wait until the client is disconnected.

Parameters timeout : float in seconds

Seconds to wait for the client to disconnect.

Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol(timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns received : bool

Whether protocol information was received

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running(timeout=None)
Wait until the client is running.

32 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

Base Classes

class katcp.DeviceClient(host, port, tb_limit=20, logger=<logging.Logger object>,
auto_reconnect=True)

Device client proxy.

Subclasses should implement .reply_*, .inform_* and send_request_* methods to take actions when messages
arrive, and implement unhandled_inform, unhandled_reply and unhandled_request to provide fallbacks for mes-
sages for which there is no handler.

Request messages can be sent by calling .send_request().

Parameters host : string

Host to connect to.

port : int

Port to connect to.

tb_limit : int

Maximum number of stack frames to send in error traceback.

logger : object

Python Logger object to log to.

auto_reconnect : bool

Whether to automatically reconnect if the connection dies.

Notes

The client may block its ioloop if the default blocking tornado DNS resolver is used. When an ioloop is shared,
it would make sense to configure one of the non-blocking resolver classes, see http://tornado.readthedocs.org/
en/latest/netutil.html

Examples

>>> MyClient(DeviceClient):
... def reply_myreq(self, msg):
... print str(msg)
...
>>> c = MyClient('localhost', 10000){
>>> c.start()

(continues on next page)

1.2. Core API 33

http://tornado.readthedocs.org/en/latest/netutil.html
http://tornado.readthedocs.org/en/latest/netutil.html


KATCP Documentation, Release 0.0+unknown.202102020856

(continued from previous page)

>>> c.send_request(katcp.Message.request('myreq'))
>>> # expect reply to be printed here
>>> # stop the client once we're finished with it
>>> c.stop()
>>> c.join()

Methods

DeviceClient.convert_seconds(time_seconds)Convert a time in seconds to the device timestamp
units.

DeviceClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

DeviceClient.enable_thread_safety() Enable thread-safety features.
DeviceClient.handle_inform(msg) Dispatch an inform message to the appropriate

method.
DeviceClient.handle_message(msg) Handle a message from the server.
DeviceClient.handle_reply(msg) Dispatch a reply message to the appropriate method.
DeviceClient.handle_request(msg) Dispatch a request message to the appropriate

method.
DeviceClient.inform_build_state(msg) Handle katcp v4 and below build-state inform.
DeviceClient.inform_version(msg) Handle katcp v4 and below version inform.
DeviceClient.inform_version_connect(msg)Process a #version-connect message.
DeviceClient.is_connected() Check if the socket is currently connected.
DeviceClient.join([timeout]) Rejoin the client thread.
DeviceClient.next()
DeviceClient.notify_connected(connected)Event handler that is called whenever the connection

status changes.
DeviceClient.preset_protocol_flags(. . . )Preset server protocol flags.
DeviceClient.request(msg[, use_mid]) Send a request message, with automatic message ID

assignment.
DeviceClient.running() Whether the client is running.
DeviceClient.send_message(msg) Send any kind of message.
DeviceClient.send_request(msg) Send a request message.
DeviceClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
DeviceClient.start([timeout]) Start the client in a new thread.
DeviceClient.stop([timeout]) Stop a running client.
DeviceClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
DeviceClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
DeviceClient.unhandled_request(msg) Fallback method for requests without a registered

handler.
DeviceClient.until_connected(**kwargs) Return future that resolves when the client is con-

nected.
DeviceClient.until_protocol(**kwargs) Return future that resolves after receipt of katcp pro-

tocol info.
DeviceClient.until_running([timeout]) Return future that resolves when the client is run-

ning.
Continued on next page

34 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 4 – continued from previous page
DeviceClient.until_stopped([timeout]) Return future that resolves when the client has

stopped.
DeviceClient.wait_connected([timeout]) Wait until the client is connected.
DeviceClient.wait_disconnected([timeout])Wait until the client is disconnected.
DeviceClient.wait_protocol([timeout]) Wait until katcp protocol information has been re-

ceived from server.
DeviceClient.wait_running([timeout]) Wait until the client is running.

MAX_LOOP_LATENCY = 0.03
Do not spend more than this many seconds reading pipelined socket data

IOStream inline-reading can result in ioloop starvation (see https://groups.google.com/forum/#!topic/
python-tornado/yJrDAwDR_kA).

MAX_MSG_SIZE = 2097152
Maximum message size that can be received in bytes.

If more than MAX_MSG_SIZE bytes are read from the socket without encountering a message terminator
(i.e. newline), the connection is closed.

MAX_WRITE_BUFFER_SIZE = 4194304
Maximum outstanding bytes to be buffered by the server process.

If more than MAX_WRITE_BUFFER_SIZE bytes are outstanding, the connection is closed. Note that the
OS also buffers socket writes, so more than MAX_WRITE_BUFFER_SIZE bytes may be untransmitted
in total.

bind_address
(host, port) where the client is connecting

convert_seconds(time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety()
Enable thread-safety features.

Must be called before start().

handle_inform(msg)
Dispatch an inform message to the appropriate method.

Parameters msg : Message object

The inform message to dispatch.

handle_message(msg)
Handle a message from the server.

Parameters msg : Message object

The Message to dispatch to the handler methods.

handle_reply(msg)
Dispatch a reply message to the appropriate method.

1.2. Core API 35

https://groups.google.com/forum/#!topic/python-tornado/yJrDAwDR_kA
https://groups.google.com/forum/#!topic/python-tornado/yJrDAwDR_kA


KATCP Documentation, Release 0.0+unknown.202102020856

Parameters msg : Message object

The reply message to dispatch.

handle_request(msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object

The request message to dispatch.

inform_build_state(msg)
Handle katcp v4 and below build-state inform.

inform_version(msg)
Handle katcp v4 and below version inform.

inform_version_connect(msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

join(timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify_connected(connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request(msg, use_mid=None)
Send a request message, with automatic message ID assignment.

36 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters msg : katcp.Message request message

use_mid : bool or None, default=None

Returns mid : string or None

The message id, or None if no msg id is used

If use_mid is None and the server supports msg ids, or if use_mid is :

True a message ID will automatically be assigned msg.mid is None. :

if msg.mid has a value, and the server supports msg ids, that value :

will be used. If the server does not support msg ids, KatcpVersionError :

will be raised. :

running()
Whether the client is running.

Returns running : bool

Whether the client is running.

send_message(msg)
Send any kind of message.

Parameters msg : Message object

The message to send.

send_request(msg)
Send a request message.

Parameters msg : Message object

The request Message to send.

set_ioloop(ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start(timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop(timeout=None)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

1.2. Core API 37



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform(msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object

The inform message that wasn’t processed by any handlers.

unhandled_reply(msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object

The reply message that wasn’t processed by any handlers.

unhandled_request(msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

The request message that wasn’t processed by any handlers.

until_connected(**kwargs)
Return future that resolves when the client is connected.

until_protocol(**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running(timeout=None)
Return future that resolves when the client is running.

Notes

Must be called from the same ioloop as the client.

until_stopped(timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected(timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

38 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected(timeout=None)
Wait until the client is disconnected.

Parameters timeout : float in seconds

Seconds to wait for the client to disconnect.

Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol(timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns received : bool

Whether protocol information was received

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running(timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

1.2. Core API 39



KATCP Documentation, Release 0.0+unknown.202102020856

Exceptions

class katcp.KatcpClientError
Raised by KATCP clients when an error occurs.

1.2.2 Server

AsyncDeviceServer

class katcp.AsyncDeviceServer(*args, **kwargs)
DeviceServer that is automatically configured for async use.

Same as instantiating a DeviceServer instance and calling meth-
ods set_concurrency_options(thread_safe=False, handler_thread=False) and
set_ioloop(tornado.ioloop.IOLoop.current()) before starting.

Methods

AsyncDeviceServer.add_sensor(sensor) Add a sensor to the device.
AsyncDeviceServer.build_state() Return build state string of the form name-

major.minor[(a|b|rc)n].
AsyncDeviceServer.
clear_strategies(client_conn)

Clear the sensor strategies of a client connection.

AsyncDeviceServer.
create_exception_reply_and_log(. . . )
AsyncDeviceServer.
create_log_inform(. . . [, . . . ])

Create a katcp logging inform message.

AsyncDeviceServer.
get_sensor(sensor_name)

Fetch the sensor with the given name.

AsyncDeviceServer.get_sensors() Fetch a list of all sensors.
AsyncDeviceServer.
handle_inform(connection, msg)

Dispatch an inform message to the appropriate
method.

AsyncDeviceServer.
handle_message(. . . )

Handle messages of all types from clients.

AsyncDeviceServer.
handle_reply(connection, msg)

Dispatch a reply message to the appropriate method.

AsyncDeviceServer.
handle_request(connection, msg)

Dispatch a request message to the appropriate
method.

AsyncDeviceServer.
has_sensor(sensor_name)

Whether the sensor with specified name is known.

AsyncDeviceServer.inform(connection,
msg)

Send an inform message to a particular client.

AsyncDeviceServer.join([timeout]) Rejoin the server thread.
AsyncDeviceServer.mass_inform(msg) Send an inform message to all clients.
AsyncDeviceServer.next()
AsyncDeviceServer.
on_client_connect(**kwargs)

Inform client of build state and version on connect.

AsyncDeviceServer.
on_client_disconnect(. . . )

Inform client it is about to be disconnected.

Continued on next page

40 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 5 – continued from previous page
AsyncDeviceServer.
on_message(client_conn, msg)

Dummy implementation of on_message required by
KATCPServer.

AsyncDeviceServer.
remove_sensor(sensor)

Remove a sensor from the device.

AsyncDeviceServer.reply(connection, re-
ply, . . . )

Send an asynchronous reply to an earlier request.

AsyncDeviceServer.
reply_inform(connection, . . . )

Send an inform as part of the reply to an earlier re-
quest.

AsyncDeviceServer.
request_client_list(req, msg)

Request the list of connected clients.

AsyncDeviceServer.request_halt(req,
msg)

Halt the device server.

AsyncDeviceServer.request_help(req,
msg)

Return help on the available requests.

AsyncDeviceServer.
request_log_level(req, msg)

Query or set the current logging level.

AsyncDeviceServer.
request_request_timeout_hint(. . . )

Return timeout hints for requests

AsyncDeviceServer.
request_restart(req, msg)

Restart the device server.

AsyncDeviceServer.
request_sensor_list(req, msg)

Request the list of sensors.

AsyncDeviceServer.
request_sensor_sampling(. . . )

Configure or query the way a sensor is sampled.

AsyncDeviceServer.
request_sensor_sampling_clear(. . . )

Set all sampling strategies for this client to none.

AsyncDeviceServer.
request_sensor_value(req, msg)

Request the value of a sensor or sensors.

AsyncDeviceServer.
request_version_list(req, msg)

Request the list of versions of roles and subcompo-
nents.

AsyncDeviceServer.
request_watchdog(req, msg)

Check that the server is still alive.

AsyncDeviceServer.running() Whether the server is running.
AsyncDeviceServer.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
AsyncDeviceServer.
set_concurrency_options([. . . ])

Set concurrency options for this device server.

AsyncDeviceServer.set_ioloop([ioloop]) Set the tornado IOLoop to use.
AsyncDeviceServer.
set_restart_queue(. . . )

Set the restart queue.

AsyncDeviceServer.setup_sensors() Populate the dictionary of sensors.
AsyncDeviceServer.start([timeout]) Start the server in a new thread.
AsyncDeviceServer.stop([timeout]) Stop a running server (from another thread).
AsyncDeviceServer.
sync_with_ioloop([timeout])

Block for ioloop to complete a loop if called from
another thread.

AsyncDeviceServer.version() Return a version string of the form type-major.minor.
AsyncDeviceServer.
wait_running([timeout])

Wait until the server is running

add_sensor(sensor)
Add a sensor to the device.

1.2. Core API 41



KATCP Documentation, Release 0.0+unknown.202102020856

Usually called inside .setup_sensors() but may be called from elsewhere.

Parameters sensor : Sensor object

The sensor object to register with the device server.

build_state()
Return build state string of the form name-major.minor[(a|b|rc)n].

clear_strategies(client_conn, remove_client=False)
Clear the sensor strategies of a client connection.

Parameters client_connection : ClientConnection instance

The connection that should have its sampling strategies cleared

remove_client : bool, optional

Remove the client connection from the strategies data-structure. Useful for clients that
disconnect.

create_log_inform(level_name, msg, name, timestamp=None)
Create a katcp logging inform message.

Usually this will be called from inside a DeviceLogger object, but it is also used by the methods in this
class when errors need to be reported to the client.

get_sensor(sensor_name)
Fetch the sensor with the given name.

Parameters sensor_name : str

Name of the sensor to retrieve.

Returns sensor : Sensor object

The sensor with the given name.

get_sensors()
Fetch a list of all sensors.

Returns sensors : list of Sensor objects

The list of sensors registered with the device server.

handle_inform(connection, msg)
Dispatch an inform message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The inform message to process.

handle_message(client_conn, msg)
Handle messages of all types from clients.

Parameters client_conn : ClientConnection object

The client connection the message was from.

msg : Message object

The message to process.

42 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

handle_reply(connection, msg)
Dispatch a reply message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The reply message to process.

handle_request(connection, msg)
Dispatch a request message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The request message to process.

Returns done_future : Future or None

Returns Future for async request handlers that will resolve when done, or None for sync
request handlers once they have completed.

has_sensor(sensor_name)
Whether the sensor with specified name is known.

inform(connection, msg)
Send an inform message to a particular client.

Should only be used for asynchronous informs. Informs that are part of the response to a request should
use reply_inform() so that the message identifier from the original request can be attached to the
inform.

Parameters connection : ClientConnection object

The client to send the message to.

msg : Message object

The inform message to send.

join(timeout=None)
Rejoin the server thread.

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

mass_inform(msg)
Send an inform message to all clients.

Parameters msg : Message object

The inform message to send.

on_client_connect(**kwargs)
Inform client of build state and version on connect.

Parameters client_conn : ClientConnection object

The client connection that has been successfully established.

Returns Future that resolves when the device is ready to accept messages. :

1.2. Core API 43



KATCP Documentation, Release 0.0+unknown.202102020856

on_client_disconnect(client_conn, msg, connection_valid)
Inform client it is about to be disconnected.

Parameters client_conn : ClientConnection object

The client connection being disconnected.

msg : str

Reason client is being disconnected.

connection_valid : bool

True if connection is still open for sending, False otherwise.

Returns Future that resolves when the client connection can be closed. :

on_message(client_conn, msg)
Dummy implementation of on_message required by KATCPServer.

Will be replaced by a handler with the appropriate concurrency semantics when set_concurrency_options
is called (defaults are set in __init__()).

remove_sensor(sensor)
Remove a sensor from the device.

Also deregisters all clients observing the sensor.

Parameters sensor : Sensor object or name string

The sensor to remove from the device server.

reply(connection, reply, orig_req)
Send an asynchronous reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the reply to.

reply : Message object

The reply message to send.

orig_req : Message object

The request message being replied to. The reply message’s id is overridden with the id
from orig_req before the reply is sent.

reply_inform(connection, inform, orig_req)
Send an inform as part of the reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the inform to.

inform : Message object

The inform message to send.

orig_req : Message object

The request message being replied to. The inform message’s id is overridden with the
id from orig_req before the inform is sent.

request_client_list(req, msg)
Request the list of connected clients.

The list of clients is sent as a sequence of #client-list informs.

44 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Informs addr : str

The address of the client as host:port with host in dotted quad notation. If the address
of the client could not be determined (because, for example, the client disconnected
suddenly) then a unique string representing the client is sent instead.

Returns success : {‘ok’, ‘fail’}

Whether sending the client list succeeded.

informs : int

Number of #client-list inform messages sent.

Examples

?client-list
#client-list 127.0.0.1:53600
!client-list ok 1

request_halt(req, msg)
Halt the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the halt succeeded.

Examples

?halt
!halt ok

request_help(req, msg)
Return help on the available requests.

Return a description of the available requests using a sequence of #help informs.

Parameters request : str, optional

The name of the request to return help for (the default is to return help for all requests).

Informs request : str

The name of a request.

description : str

Documentation for the named request.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

informs : int

Number of #help inform messages sent.

1.2. Core API 45



KATCP Documentation, Release 0.0+unknown.202102020856

Examples

?help
#help halt ...description...
#help help ...description...
...
!help ok 5

?help halt
#help halt ...description...
!help ok 1

request_log_level(req, msg)
Query or set the current logging level.

Parameters level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}, optional

Name of the logging level to set the device server to (the default is to leave the log level
unchanged).

Returns success : {‘ok’, ‘fail’}

Whether the request succeeded.

level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}

The log level after processing the request.

Examples

?log-level
!log-level ok warn

?log-level info
!log-level ok info

request_request_timeout_hint(req, msg)
Return timeout hints for requests

KATCP requests should generally take less than 5s to complete, but some requests are unavoidably slow.
This results in spurious client timeout errors. This request provides timeout hints that clients can use to
select suitable request timeouts.

Parameters request : str, optional

The name of the request to return a timeout hint for (the default is to return hints for all
requests that have timeout hints). Returns one inform per request. Must be an existing
request if specified.

Informs request : str

The name of the request.

suggested_timeout : float

Suggested request timeout in seconds for the request. If suggested_timeout is zero (0),
no timeout hint is available.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

46 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

informs : int

Number of #request-timeout-hint inform messages sent.

Notes

?request-timeout-hint without a parameter will only return informs for requests that have specific timeout
hints, so it will most probably be a subset of all the requests, or even no informs at all.

Examples

?request-timeout-hint
#request-timeout-hint halt 5
#request-timeout-hint very-slow-request 500
...
!request-timeout-hint ok 5

?request-timeout-hint moderately-slow-request
#request-timeout-hint moderately-slow-request 20
!request-timeout-hint ok 1

request_restart(req, msg)
Restart the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the restart succeeded.

Examples

?restart
!restart ok

request_sensor_list(req, msg)
Request the list of sensors.

The list of sensors is sent as a sequence of #sensor-list informs.

Parameters name : str, optional

Name of the sensor to list (the default is to list all sensors). If name starts and ends with
‘/’ it is treated as a regular expression and all sensors whose names contain the regular
expression are returned.

Informs name : str

The name of the sensor being described.

description : str

Description of the named sensor.

units : str

Units for the value of the named sensor.

type : str

Type of the named sensor.

1.2. Core API 47



KATCP Documentation, Release 0.0+unknown.202102020856

params : list of str, optional

Additional sensor parameters (type dependent). For integer and float sensors the addi-
tional parameters are the minimum and maximum sensor value. For discrete sensors the
additional parameters are the allowed values. For all other types no additional parame-
ters are sent.

Returns success : {‘ok’, ‘fail’}

Whether sending the sensor list succeeded.

informs : int

Number of #sensor-list inform messages sent.

Examples

?sensor-list
#sensor-list psu.voltage PSU\_voltage. V float 0.0 5.0
#sensor-list cpu.status CPU\_status. \@ discrete on off error
...
!sensor-list ok 5

?sensor-list cpu.power.on
#sensor-list cpu.power.on Whether\_CPU\_hase\_power. \@ boolean
!sensor-list ok 1

?sensor-list /voltage/
#sensor-list psu.voltage PSU\_voltage. V float 0.0 5.0
#sensor-list cpu.voltage CPU\_voltage. V float 0.0 3.0
!sensor-list ok 2

request_sensor_sampling(req, msg)
Configure or query the way a sensor is sampled.

Sampled values are reported asynchronously using the #sensor-status message.

Parameters names : str

One or more names of sensors whose sampling strategy will be queried or configured.
If specifying multiple sensors, these must be provided as a comma-separated list. A
query can only be done on a single sensor. However, configuration can be done on
many sensors with a single request, as long as they all use the same strategy. Note:
prior to KATCP v5.1 only a single sensor could be configured. Multiple sensors are
only allowed if the device server sets the protocol version to KATCP v5.1 or higher and
enables the BULK_SET_SENSOR_SAMPLING flag in its PROTOCOL_INFO class
attribute.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘differential-rate’,

‘period’, ‘event-rate’}, optional

Type of strategy to use to report the sensor value. The differential strategy types may
only be used with integer or float sensors. If this parameter is supplied, it sets the new
strategy.

params : list of str, optional

Additional strategy parameters (dependent on the strategy type). For the differential
strategy, the parameter is an integer or float giving the amount by which the sensor value
may change before an updated value is sent. For the period strategy, the parameter is the

48 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

sampling period in float seconds. The event strategy has no parameters. Note that this
has changed from KATCPv4. For the event-rate strategy, a minimum period between
updates and a maximum period between updates (both in float seconds) must be given.
If the event occurs more than once within the minimum period, only one update will
occur. Whether or not the event occurs, the sensor value will be updated at least once
per maximum period. For the differential-rate strategy there are 3 parameters. The first
is the same as the differential strategy parameter. The second and third are the minimum
and maximum periods, respectively, as with the event-rate strategy.

Informs timestamp : float

Timestamp of the sensor reading in seconds since the Unix epoch, or milliseconds for
katcp versions <= 4.

count : {1}

Number of sensors described in this #sensor-status inform. Will always be one. It exists
to keep this inform compatible with #sensor-value.

name : str

Name of the sensor whose value is being reported.

value : object

Value of the named sensor. Type depends on the type of the sensor.

Returns success : {‘ok’, ‘fail’}

Whether the sensor-sampling request succeeded.

names : str

Name(s) of the sensor queried or configured. If multiple sensors, this will be a comma-
separated list.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘differential-rate’,

‘period’, ‘event-rate’}.

Name of the new or current sampling strategy for the sensor(s).

params : list of str

Additional strategy parameters (see description under Parameters).

Examples :

——– :

:: :

?sensor-sampling cpu.power.on !sensor-sampling ok cpu.power.on none

?sensor-sampling cpu.power.on period 0.5 #sensor-status 1244631611.415231 1
cpu.power.on nominal 1 !sensor-sampling ok cpu.power.on period 0.5

if BULK_SET_SENSOR_SAMPLING is enabled then:

?sensor-sampling cpu.power.on,fan.speed !sensor-sampling fail Can-
not_query_multiple_sensors

?sensor-sampling cpu.power.on,fan.speed period 0.5 #sensor-status
1244631611.415231 1 cpu.power.on nominal 1 #sensor-status 1244631611.415200 1
fan.speed nominal 10.0 !sensor-sampling ok cpu.power.on,fan.speed period 0.5

1.2. Core API 49



KATCP Documentation, Release 0.0+unknown.202102020856

request_sensor_sampling_clear(req, msg)
Set all sampling strategies for this client to none.

Returns success : {‘ok’, ‘fail’}

Whether sending the list of devices succeeded.

Examples

?sensor-sampling-clear !sensor-sampling-clear ok

request_sensor_value(req, msg)
Request the value of a sensor or sensors.

A list of sensor values as a sequence of #sensor-value informs.

Parameters name : str, optional

Name of the sensor to poll (the default is to send values for all sensors). If name starts
and ends with ‘/’ it is treated as a regular expression and all sensors whose names contain
the regular expression are returned.

Informs timestamp : float

Timestamp of the sensor reading in seconds since the Unix epoch, or milliseconds for
katcp versions <= 4.

count : {1}

Number of sensors described in this #sensor-value inform. Will always be one. It exists
to keep this inform compatible with #sensor-status.

name : str

Name of the sensor whose value is being reported.

value : object

Value of the named sensor. Type depends on the type of the sensor.

Returns success : {‘ok’, ‘fail’}

Whether sending the list of values succeeded.

informs : int

Number of #sensor-value inform messages sent.

Examples

?sensor-value
#sensor-value 1244631611.415231 1 psu.voltage nominal 4.5
#sensor-value 1244631611.415200 1 cpu.status nominal off
...
!sensor-value ok 5

?sensor-value cpu.power.on
#sensor-value 1244631611.415231 1 cpu.power.on nominal 0
!sensor-value ok 1

request_version_list(req, msg)
Request the list of versions of roles and subcomponents.

50 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Informs name : str

Name of the role or component.

version : str

A string identifying the version of the component. Individual components may define
the structure of this argument as they choose. In the absence of other information clients
should treat it as an opaque string.

build_state_or_serial_number : str

A unique identifier for a particular instance of a component. This should change when-
ever the component is replaced or updated.

Returns success : {‘ok’, ‘fail’}

Whether sending the version list succeeded.

informs : int

Number of #version-list inform messages sent.

Examples

?version-list
#version-list katcp-protocol 5.0-MI
#version-list katcp-library katcp-python-0.4 katcp-python-0.4.1-py2
#version-list katcp-device foodevice-1.0 foodevice-1.0.0rc1
!version-list ok 3

request_watchdog(req, msg)
Check that the server is still alive.

Returns success : {‘ok’}

Examples

?watchdog
!watchdog ok

running()
Whether the server is running.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_concurrency_options(thread_safe=True, handler_thread=True)
Set concurrency options for this device server. Must be called before start().

Parameters thread_safe : bool

If True, make the server public methods thread safe. Incurs performance overhead.

handler_thread : bool

1.2. Core API 51



KATCP Documentation, Release 0.0+unknown.202102020856

Can only be set if thread_safe is True. Handle all requests (even from different clients)
in a separate, single, request-handling thread. Blocking request handlers will prevent
the server from handling new requests from any client, but sensor strategies should still
function. This more or less mimics the behaviour of a server in library versions before
0.6.0.

set_ioloop(ioloop=None)
Set the tornado IOLoop to use.

Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never
called the IOLoop is started in a new thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called.

set_restart_queue(restart_queue)
Set the restart queue.

When the device server should be restarted, it will be added to the queue.

Parameters restart_queue : Queue.Queue object

The queue to add the device server to when it should be restarted.

setup_sensors()
Populate the dictionary of sensors.

Unimplemented by default – subclasses should add their sensors here or pass if there are no sensors.

Examples

>>> class MyDevice(DeviceServer):
... def setup_sensors(self):
... self.add_sensor(Sensor(...))
... self.add_sensor(Sensor(...))
...

start(timeout=None)
Start the server in a new thread.

Parameters timeout : float or None, optional

Time in seconds to wait for server thread to start.

stop(timeout=1.0)
Stop a running server (from another thread).

Parameters timeout : float, optional

Seconds to wait for server to have started.

Returns stopped : thread-safe Future

Resolves when the server is stopped

sync_with_ioloop(timeout=None)
Block for ioloop to complete a loop if called from another thread.

Returns a future if called from inside the ioloop.

Raises concurrent.futures.TimeoutError if timed out while blocking.

52 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

version()
Return a version string of the form type-major.minor.

wait_running(timeout=None)
Wait until the server is running

DeviceServer

class katcp.DeviceServer(*args, **kwargs)
Implements some standard messages on top of DeviceServerBase.

Inform messages handled are:

• version (sent on connect)

• build-state (sent on connect)

• log (via self.log.warn(. . . ), etc)

• disconnect

• client-connected

Requests handled are:

• halt

• help

• log-level

• restart1

• client-list

• sensor-list

• sensor-sampling

• sensor-value

• watchdog

• version-list (only standard in KATCP v5 or later)

• request-timeout-hint (pre-standard only if protocol flags indicates timeout hints, supported for
KATCP v5.1 or later)

• sensor-sampling-clear (non-standard)

Unhandled standard requests are:

• configure

• mode

Subclasses can define the tuple VERSION_INFO to set the interface name, major and minor version numbers.
The BUILD_INFO tuple can be defined to give a string describing a particular interface instance and may have
a fourth element containing additional version information (e.g. rc1).

Subclasses may manipulate the versions returned by the ?version-list command by editing .extra_versions
which is a dictionary mapping role or component names to (version, build_state_or_serial_no) tuples. The
build_state_or_serial_no may be None.

1 Restart relies on .set_restart_queue() being used to register a restart queue with the device. When the device needs to be restarted, it will be
added to the restart queue. The queue should be a Python Queue.Queue object without a maximum size.

1.2. Core API 53



KATCP Documentation, Release 0.0+unknown.202102020856

Subclasses must override the .setup_sensors() method. If they have no sensors to register, the method should
just be a pass.

Methods

DeviceServer.add_sensor(sensor) Add a sensor to the device.
DeviceServer.build_state() Return build state string of the form name-

major.minor[(a|b|rc)n].
DeviceServer.clear_strategies(client_conn[,
. . . ])

Clear the sensor strategies of a client connection.

DeviceServer.create_exception_reply_and_log(. . . )
DeviceServer.create_log_inform(level_name,
. . . )

Create a katcp logging inform message.

DeviceServer.get_sensor(sensor_name) Fetch the sensor with the given name.
DeviceServer.get_sensors() Fetch a list of all sensors.
DeviceServer.handle_inform(connection,
msg)

Dispatch an inform message to the appropriate
method.

DeviceServer.handle_message(client_conn,
msg)

Handle messages of all types from clients.

DeviceServer.handle_reply(connection,
msg)

Dispatch a reply message to the appropriate method.

DeviceServer.handle_request(connection,
msg)

Dispatch a request message to the appropriate
method.

DeviceServer.has_sensor(sensor_name) Whether the sensor with specified name is known.
DeviceServer.inform(connection, msg) Send an inform message to a particular client.
DeviceServer.join([timeout]) Rejoin the server thread.
DeviceServer.mass_inform(msg) Send an inform message to all clients.
DeviceServer.next()
DeviceServer.on_client_connect(**kwargs)Inform client of build state and version on connect.
DeviceServer.on_client_disconnect(. . . ) Inform client it is about to be disconnected.
DeviceServer.on_message(client_conn,
msg)

Dummy implementation of on_message required by
KATCPServer.

DeviceServer.remove_sensor(sensor) Remove a sensor from the device.
DeviceServer.reply(connection, reply,
orig_req)

Send an asynchronous reply to an earlier request.

DeviceServer.reply_inform(connection,
. . . )

Send an inform as part of the reply to an earlier re-
quest.

DeviceServer.request_client_list(req,
msg)

Request the list of connected clients.

DeviceServer.request_halt(req, msg) Halt the device server.
DeviceServer.request_help(req, msg) Return help on the available requests.
DeviceServer.request_log_level(req,
msg)

Query or set the current logging level.

DeviceServer.request_request_timeout_hint(. . . )Return timeout hints for requests
DeviceServer.request_restart(req, msg) Restart the device server.
DeviceServer.request_sensor_list(req,
msg)

Request the list of sensors.

DeviceServer.request_sensor_sampling(req,
msg)

Configure or query the way a sensor is sampled.

DeviceServer.request_sensor_sampling_clear(. . . )Set all sampling strategies for this client to none.
Continued on next page

54 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 6 – continued from previous page
DeviceServer.request_sensor_value(req,
msg)

Request the value of a sensor or sensors.

DeviceServer.request_version_list(req,
msg)

Request the list of versions of roles and subcompo-
nents.

DeviceServer.request_watchdog(req,
msg)

Check that the server is still alive.

DeviceServer.running() Whether the server is running.
DeviceServer.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
DeviceServer.set_concurrency_options([. . . ])Set concurrency options for this device server.
DeviceServer.set_ioloop([ioloop]) Set the tornado IOLoop to use.
DeviceServer.set_restart_queue(restart_queue)Set the restart queue.
DeviceServer.setup_sensors() Populate the dictionary of sensors.
DeviceServer.start([timeout]) Start the server in a new thread.
DeviceServer.stop([timeout]) Stop a running server (from another thread).
DeviceServer.sync_with_ioloop([timeout]) Block for ioloop to complete a loop if called from

another thread.
DeviceServer.version() Return a version string of the form type-major.minor.
DeviceServer.wait_running([timeout]) Wait until the server is running

add_sensor(sensor)
Add a sensor to the device.

Usually called inside .setup_sensors() but may be called from elsewhere.

Parameters sensor : Sensor object

The sensor object to register with the device server.

build_state()
Return build state string of the form name-major.minor[(a|b|rc)n].

clear_strategies(client_conn, remove_client=False)
Clear the sensor strategies of a client connection.

Parameters client_connection : ClientConnection instance

The connection that should have its sampling strategies cleared

remove_client : bool, optional

Remove the client connection from the strategies data-structure. Useful for clients that
disconnect.

create_log_inform(level_name, msg, name, timestamp=None)
Create a katcp logging inform message.

Usually this will be called from inside a DeviceLogger object, but it is also used by the methods in this
class when errors need to be reported to the client.

get_sensor(sensor_name)
Fetch the sensor with the given name.

Parameters sensor_name : str

Name of the sensor to retrieve.

Returns sensor : Sensor object

The sensor with the given name.

1.2. Core API 55



KATCP Documentation, Release 0.0+unknown.202102020856

get_sensors()
Fetch a list of all sensors.

Returns sensors : list of Sensor objects

The list of sensors registered with the device server.

handle_inform(connection, msg)
Dispatch an inform message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The inform message to process.

handle_message(client_conn, msg)
Handle messages of all types from clients.

Parameters client_conn : ClientConnection object

The client connection the message was from.

msg : Message object

The message to process.

handle_reply(connection, msg)
Dispatch a reply message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The reply message to process.

handle_request(connection, msg)
Dispatch a request message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The request message to process.

Returns done_future : Future or None

Returns Future for async request handlers that will resolve when done, or None for sync
request handlers once they have completed.

has_sensor(sensor_name)
Whether the sensor with specified name is known.

inform(connection, msg)
Send an inform message to a particular client.

Should only be used for asynchronous informs. Informs that are part of the response to a request should
use reply_inform() so that the message identifier from the original request can be attached to the
inform.

Parameters connection : ClientConnection object

56 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

The client to send the message to.

msg : Message object

The inform message to send.

join(timeout=None)
Rejoin the server thread.

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

mass_inform(msg)
Send an inform message to all clients.

Parameters msg : Message object

The inform message to send.

on_client_connect(**kwargs)
Inform client of build state and version on connect.

Parameters client_conn : ClientConnection object

The client connection that has been successfully established.

Returns Future that resolves when the device is ready to accept messages. :

on_client_disconnect(client_conn, msg, connection_valid)
Inform client it is about to be disconnected.

Parameters client_conn : ClientConnection object

The client connection being disconnected.

msg : str

Reason client is being disconnected.

connection_valid : bool

True if connection is still open for sending, False otherwise.

Returns Future that resolves when the client connection can be closed. :

on_message(client_conn, msg)
Dummy implementation of on_message required by KATCPServer.

Will be replaced by a handler with the appropriate concurrency semantics when set_concurrency_options
is called (defaults are set in __init__()).

remove_sensor(sensor)
Remove a sensor from the device.

Also deregisters all clients observing the sensor.

Parameters sensor : Sensor object or name string

The sensor to remove from the device server.

reply(connection, reply, orig_req)
Send an asynchronous reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the reply to.

reply : Message object

1.2. Core API 57



KATCP Documentation, Release 0.0+unknown.202102020856

The reply message to send.

orig_req : Message object

The request message being replied to. The reply message’s id is overridden with the id
from orig_req before the reply is sent.

reply_inform(connection, inform, orig_req)
Send an inform as part of the reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the inform to.

inform : Message object

The inform message to send.

orig_req : Message object

The request message being replied to. The inform message’s id is overridden with the
id from orig_req before the inform is sent.

request_client_list(req, msg)
Request the list of connected clients.

The list of clients is sent as a sequence of #client-list informs.

Informs addr : str

The address of the client as host:port with host in dotted quad notation. If the address
of the client could not be determined (because, for example, the client disconnected
suddenly) then a unique string representing the client is sent instead.

Returns success : {‘ok’, ‘fail’}

Whether sending the client list succeeded.

informs : int

Number of #client-list inform messages sent.

Examples

?client-list
#client-list 127.0.0.1:53600
!client-list ok 1

request_halt(req, msg)
Halt the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the halt succeeded.

Examples

?halt
!halt ok

58 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

request_help(req, msg)
Return help on the available requests.

Return a description of the available requests using a sequence of #help informs.

Parameters request : str, optional

The name of the request to return help for (the default is to return help for all requests).

Informs request : str

The name of a request.

description : str

Documentation for the named request.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

informs : int

Number of #help inform messages sent.

Examples

?help
#help halt ...description...
#help help ...description...
...
!help ok 5

?help halt
#help halt ...description...
!help ok 1

request_log_level(req, msg)
Query or set the current logging level.

Parameters level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}, optional

Name of the logging level to set the device server to (the default is to leave the log level
unchanged).

Returns success : {‘ok’, ‘fail’}

Whether the request succeeded.

level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}

The log level after processing the request.

Examples

?log-level
!log-level ok warn

?log-level info
!log-level ok info

1.2. Core API 59



KATCP Documentation, Release 0.0+unknown.202102020856

request_request_timeout_hint(req, msg)
Return timeout hints for requests

KATCP requests should generally take less than 5s to complete, but some requests are unavoidably slow.
This results in spurious client timeout errors. This request provides timeout hints that clients can use to
select suitable request timeouts.

Parameters request : str, optional

The name of the request to return a timeout hint for (the default is to return hints for all
requests that have timeout hints). Returns one inform per request. Must be an existing
request if specified.

Informs request : str

The name of the request.

suggested_timeout : float

Suggested request timeout in seconds for the request. If suggested_timeout is zero (0),
no timeout hint is available.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

informs : int

Number of #request-timeout-hint inform messages sent.

Notes

?request-timeout-hint without a parameter will only return informs for requests that have specific timeout
hints, so it will most probably be a subset of all the requests, or even no informs at all.

Examples

?request-timeout-hint
#request-timeout-hint halt 5
#request-timeout-hint very-slow-request 500
...
!request-timeout-hint ok 5

?request-timeout-hint moderately-slow-request
#request-timeout-hint moderately-slow-request 20
!request-timeout-hint ok 1

request_restart(req, msg)
Restart the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the restart succeeded.

Examples

?restart
!restart ok

60 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

request_sensor_list(req, msg)
Request the list of sensors.

The list of sensors is sent as a sequence of #sensor-list informs.

Parameters name : str, optional

Name of the sensor to list (the default is to list all sensors). If name starts and ends with
‘/’ it is treated as a regular expression and all sensors whose names contain the regular
expression are returned.

Informs name : str

The name of the sensor being described.

description : str

Description of the named sensor.

units : str

Units for the value of the named sensor.

type : str

Type of the named sensor.

params : list of str, optional

Additional sensor parameters (type dependent). For integer and float sensors the addi-
tional parameters are the minimum and maximum sensor value. For discrete sensors the
additional parameters are the allowed values. For all other types no additional parame-
ters are sent.

Returns success : {‘ok’, ‘fail’}

Whether sending the sensor list succeeded.

informs : int

Number of #sensor-list inform messages sent.

Examples

?sensor-list
#sensor-list psu.voltage PSU\_voltage. V float 0.0 5.0
#sensor-list cpu.status CPU\_status. \@ discrete on off error
...
!sensor-list ok 5

?sensor-list cpu.power.on
#sensor-list cpu.power.on Whether\_CPU\_hase\_power. \@ boolean
!sensor-list ok 1

?sensor-list /voltage/
#sensor-list psu.voltage PSU\_voltage. V float 0.0 5.0
#sensor-list cpu.voltage CPU\_voltage. V float 0.0 3.0
!sensor-list ok 2

request_sensor_sampling(req, msg)
Configure or query the way a sensor is sampled.

Sampled values are reported asynchronously using the #sensor-status message.

1.2. Core API 61



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters names : str

One or more names of sensors whose sampling strategy will be queried or configured.
If specifying multiple sensors, these must be provided as a comma-separated list. A
query can only be done on a single sensor. However, configuration can be done on
many sensors with a single request, as long as they all use the same strategy. Note:
prior to KATCP v5.1 only a single sensor could be configured. Multiple sensors are
only allowed if the device server sets the protocol version to KATCP v5.1 or higher and
enables the BULK_SET_SENSOR_SAMPLING flag in its PROTOCOL_INFO class
attribute.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘differential-rate’,

‘period’, ‘event-rate’}, optional

Type of strategy to use to report the sensor value. The differential strategy types may
only be used with integer or float sensors. If this parameter is supplied, it sets the new
strategy.

params : list of str, optional

Additional strategy parameters (dependent on the strategy type). For the differential
strategy, the parameter is an integer or float giving the amount by which the sensor value
may change before an updated value is sent. For the period strategy, the parameter is the
sampling period in float seconds. The event strategy has no parameters. Note that this
has changed from KATCPv4. For the event-rate strategy, a minimum period between
updates and a maximum period between updates (both in float seconds) must be given.
If the event occurs more than once within the minimum period, only one update will
occur. Whether or not the event occurs, the sensor value will be updated at least once
per maximum period. For the differential-rate strategy there are 3 parameters. The first
is the same as the differential strategy parameter. The second and third are the minimum
and maximum periods, respectively, as with the event-rate strategy.

Informs timestamp : float

Timestamp of the sensor reading in seconds since the Unix epoch, or milliseconds for
katcp versions <= 4.

count : {1}

Number of sensors described in this #sensor-status inform. Will always be one. It exists
to keep this inform compatible with #sensor-value.

name : str

Name of the sensor whose value is being reported.

value : object

Value of the named sensor. Type depends on the type of the sensor.

Returns success : {‘ok’, ‘fail’}

Whether the sensor-sampling request succeeded.

names : str

Name(s) of the sensor queried or configured. If multiple sensors, this will be a comma-
separated list.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘differential-rate’,

‘period’, ‘event-rate’}.

62 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Name of the new or current sampling strategy for the sensor(s).

params : list of str

Additional strategy parameters (see description under Parameters).

Examples :

——– :

:: :

?sensor-sampling cpu.power.on !sensor-sampling ok cpu.power.on none

?sensor-sampling cpu.power.on period 0.5 #sensor-status 1244631611.415231 1
cpu.power.on nominal 1 !sensor-sampling ok cpu.power.on period 0.5

if BULK_SET_SENSOR_SAMPLING is enabled then:

?sensor-sampling cpu.power.on,fan.speed !sensor-sampling fail Can-
not_query_multiple_sensors

?sensor-sampling cpu.power.on,fan.speed period 0.5 #sensor-status
1244631611.415231 1 cpu.power.on nominal 1 #sensor-status 1244631611.415200 1
fan.speed nominal 10.0 !sensor-sampling ok cpu.power.on,fan.speed period 0.5

request_sensor_sampling_clear(req, msg)
Set all sampling strategies for this client to none.

Returns success : {‘ok’, ‘fail’}

Whether sending the list of devices succeeded.

Examples

?sensor-sampling-clear !sensor-sampling-clear ok

request_sensor_value(req, msg)
Request the value of a sensor or sensors.

A list of sensor values as a sequence of #sensor-value informs.

Parameters name : str, optional

Name of the sensor to poll (the default is to send values for all sensors). If name starts
and ends with ‘/’ it is treated as a regular expression and all sensors whose names contain
the regular expression are returned.

Informs timestamp : float

Timestamp of the sensor reading in seconds since the Unix epoch, or milliseconds for
katcp versions <= 4.

count : {1}

Number of sensors described in this #sensor-value inform. Will always be one. It exists
to keep this inform compatible with #sensor-status.

name : str

Name of the sensor whose value is being reported.

value : object

Value of the named sensor. Type depends on the type of the sensor.

1.2. Core API 63



KATCP Documentation, Release 0.0+unknown.202102020856

Returns success : {‘ok’, ‘fail’}

Whether sending the list of values succeeded.

informs : int

Number of #sensor-value inform messages sent.

Examples

?sensor-value
#sensor-value 1244631611.415231 1 psu.voltage nominal 4.5
#sensor-value 1244631611.415200 1 cpu.status nominal off
...
!sensor-value ok 5

?sensor-value cpu.power.on
#sensor-value 1244631611.415231 1 cpu.power.on nominal 0
!sensor-value ok 1

request_version_list(req, msg)
Request the list of versions of roles and subcomponents.

Informs name : str

Name of the role or component.

version : str

A string identifying the version of the component. Individual components may define
the structure of this argument as they choose. In the absence of other information clients
should treat it as an opaque string.

build_state_or_serial_number : str

A unique identifier for a particular instance of a component. This should change when-
ever the component is replaced or updated.

Returns success : {‘ok’, ‘fail’}

Whether sending the version list succeeded.

informs : int

Number of #version-list inform messages sent.

Examples

?version-list
#version-list katcp-protocol 5.0-MI
#version-list katcp-library katcp-python-0.4 katcp-python-0.4.1-py2
#version-list katcp-device foodevice-1.0 foodevice-1.0.0rc1
!version-list ok 3

request_watchdog(req, msg)
Check that the server is still alive.

Returns success : {‘ok’}

64 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Examples

?watchdog
!watchdog ok

running()
Whether the server is running.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_concurrency_options(thread_safe=True, handler_thread=True)
Set concurrency options for this device server. Must be called before start().

Parameters thread_safe : bool

If True, make the server public methods thread safe. Incurs performance overhead.

handler_thread : bool

Can only be set if thread_safe is True. Handle all requests (even from different clients)
in a separate, single, request-handling thread. Blocking request handlers will prevent
the server from handling new requests from any client, but sensor strategies should still
function. This more or less mimics the behaviour of a server in library versions before
0.6.0.

set_ioloop(ioloop=None)
Set the tornado IOLoop to use.

Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never
called the IOLoop is started in a new thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called.

set_restart_queue(restart_queue)
Set the restart queue.

When the device server should be restarted, it will be added to the queue.

Parameters restart_queue : Queue.Queue object

The queue to add the device server to when it should be restarted.

setup_sensors()
Populate the dictionary of sensors.

Unimplemented by default – subclasses should add their sensors here or pass if there are no sensors.

Examples

>>> class MyDevice(DeviceServer):
... def setup_sensors(self):
... self.add_sensor(Sensor(...))
... self.add_sensor(Sensor(...))
...

1.2. Core API 65



KATCP Documentation, Release 0.0+unknown.202102020856

start(timeout=None)
Start the server in a new thread.

Parameters timeout : float or None, optional

Time in seconds to wait for server thread to start.

stop(timeout=1.0)
Stop a running server (from another thread).

Parameters timeout : float, optional

Seconds to wait for server to have started.

Returns stopped : thread-safe Future

Resolves when the server is stopped

sync_with_ioloop(timeout=None)
Block for ioloop to complete a loop if called from another thread.

Returns a future if called from inside the ioloop.

Raises concurrent.futures.TimeoutError if timed out while blocking.

version()
Return a version string of the form type-major.minor.

wait_running(timeout=None)
Wait until the server is running

DeviceServerBase

class katcp.DeviceServerBase(host, port, tb_limit=20, logger=<logging.Logger object>)
Base class for device servers.

Subclasses should add .request_* methods for dealing with request messages. These methods each take the client
request connection and msg objects as arguments and should return the reply message or raise an exception as a
result.

Subclasses can also add .inform_* and reply_* methods to handle those types of messages.

Should a subclass need to generate inform messages it should do so using either the .inform() or .mass_inform()
methods.

Finally, this class should probably not be subclassed directly but rather via subclassing DeviceServer itself which
implements common .request_* methods.

Parameters host : str

Host to listen on.

port : int

Port to listen on.

tb_limit : int, optional

Maximum number of stack frames to send in error tracebacks.

logger : logging.Logger object, optional

Logger to log messages to.

66 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Methods

DeviceServerBase.
create_exception_reply_and_log(. . . )
DeviceServerBase.
create_log_inform(. . . [, . . . ])

Create a katcp logging inform message.

DeviceServerBase.
handle_inform(connection, msg)

Dispatch an inform message to the appropriate
method.

DeviceServerBase.
handle_message(client_conn, msg)

Handle messages of all types from clients.

DeviceServerBase.
handle_reply(connection, msg)

Dispatch a reply message to the appropriate method.

DeviceServerBase.
handle_request(connection, msg)

Dispatch a request message to the appropriate
method.

DeviceServerBase.inform(connection,
msg)

Send an inform message to a particular client.

DeviceServerBase.join([timeout]) Rejoin the server thread.
DeviceServerBase.mass_inform(msg) Send an inform message to all clients.
DeviceServerBase.next()
DeviceServerBase.
on_client_connect(**kwargs)

Called after client connection is established.

DeviceServerBase.
on_client_disconnect(**kwargs)

Called before a client connection is closed.

DeviceServerBase.
on_message(client_conn, msg)

Dummy implementation of on_message required by
KATCPServer.

DeviceServerBase.reply(connection, reply,
. . . )

Send an asynchronous reply to an earlier request.

DeviceServerBase.
reply_inform(connection, . . . )

Send an inform as part of the reply to an earlier re-
quest.

DeviceServerBase.running() Whether the server is running.
DeviceServerBase.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
DeviceServerBase.
set_concurrency_options([. . . ])

Set concurrency options for this device server.

DeviceServerBase.set_ioloop([ioloop]) Set the tornado IOLoop to use.
DeviceServerBase.start([timeout]) Start the server in a new thread.
DeviceServerBase.stop([timeout]) Stop a running server (from another thread).
DeviceServerBase.
sync_with_ioloop([timeout])

Block for ioloop to complete a loop if called from
another thread.

DeviceServerBase.
wait_running([timeout])

Wait until the server is running

create_log_inform(level_name, msg, name, timestamp=None)
Create a katcp logging inform message.

Usually this will be called from inside a DeviceLogger object, but it is also used by the methods in this
class when errors need to be reported to the client.

handle_inform(connection, msg)
Dispatch an inform message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

1.2. Core API 67



KATCP Documentation, Release 0.0+unknown.202102020856

msg : Message object

The inform message to process.

handle_message(client_conn, msg)
Handle messages of all types from clients.

Parameters client_conn : ClientConnection object

The client connection the message was from.

msg : Message object

The message to process.

handle_reply(connection, msg)
Dispatch a reply message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The reply message to process.

handle_request(connection, msg)
Dispatch a request message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The request message to process.

Returns done_future : Future or None

Returns Future for async request handlers that will resolve when done, or None for sync
request handlers once they have completed.

inform(connection, msg)
Send an inform message to a particular client.

Should only be used for asynchronous informs. Informs that are part of the response to a request should
use reply_inform() so that the message identifier from the original request can be attached to the
inform.

Parameters connection : ClientConnection object

The client to send the message to.

msg : Message object

The inform message to send.

join(timeout=None)
Rejoin the server thread.

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

mass_inform(msg)
Send an inform message to all clients.

Parameters msg : Message object

68 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

The inform message to send.

on_client_connect(**kwargs)
Called after client connection is established.

Subclasses should override if they wish to send clients message or perform house-keeping at this point.

Parameters conn : ClientConnection object

The client connection that has been successfully established.

Returns Future that resolves when the device is ready to accept messages. :

on_client_disconnect(**kwargs)
Called before a client connection is closed.

Subclasses should override if they wish to send clients message or perform house-keeping at this point.
The server cannot guarantee this will be called (for example, the client might drop the connection). The
message parameter contains the reason for the disconnection.

Parameters conn : ClientConnection object

Client connection being disconnected.

msg : str

Reason client is being disconnected.

connection_valid : boolean

True if connection is still open for sending, False otherwise.

Returns Future that resolves when the client connection can be closed. :

on_message(client_conn, msg)
Dummy implementation of on_message required by KATCPServer.

Will be replaced by a handler with the appropriate concurrency semantics when set_concurrency_options
is called (defaults are set in __init__()).

reply(connection, reply, orig_req)
Send an asynchronous reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the reply to.

reply : Message object

The reply message to send.

orig_req : Message object

The request message being replied to. The reply message’s id is overridden with the id
from orig_req before the reply is sent.

reply_inform(connection, inform, orig_req)
Send an inform as part of the reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the inform to.

inform : Message object

The inform message to send.

orig_req : Message object

1.2. Core API 69



KATCP Documentation, Release 0.0+unknown.202102020856

The request message being replied to. The inform message’s id is overridden with the
id from orig_req before the inform is sent.

running()
Whether the server is running.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_concurrency_options(thread_safe=True, handler_thread=True)
Set concurrency options for this device server. Must be called before start().

Parameters thread_safe : bool

If True, make the server public methods thread safe. Incurs performance overhead.

handler_thread : bool

Can only be set if thread_safe is True. Handle all requests (even from different clients)
in a separate, single, request-handling thread. Blocking request handlers will prevent
the server from handling new requests from any client, but sensor strategies should still
function. This more or less mimics the behaviour of a server in library versions before
0.6.0.

set_ioloop(ioloop=None)
Set the tornado IOLoop to use.

Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never
called the IOLoop is started in a new thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called.

start(timeout=None)
Start the server in a new thread.

Parameters timeout : float or None, optional

Time in seconds to wait for server thread to start.

stop(timeout=1.0)
Stop a running server (from another thread).

Parameters timeout : float, optional

Seconds to wait for server to have started.

Returns stopped : thread-safe Future

Resolves when the server is stopped

sync_with_ioloop(timeout=None)
Block for ioloop to complete a loop if called from another thread.

Returns a future if called from inside the ioloop.

Raises concurrent.futures.TimeoutError if timed out while blocking.

wait_running(timeout=None)
Wait until the server is running

70 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

DeviceLogger

class katcp.DeviceLogger(device_server, root_logger=’root’, python_logger=None)
Object for logging messages from a DeviceServer.

Log messages are logged at a particular level and under a particular name. Names use dotted notation to form a
virtual hierarchy of loggers with the device.

Parameters device_server : DeviceServerBase object

The device server this logger should use for sending out logs.

root_logger : str

The name of the root logger.

Methods

DeviceLogger.debug(msg, *args, **kwargs) Log a debug message.
DeviceLogger.error(msg, *args, **kwargs) Log an error message.
DeviceLogger.fatal(msg, *args, **kwargs) Log a fatal error message.
DeviceLogger.info(msg, *args, **kwargs) Log an info message.
DeviceLogger.level_from_name(level_name) Return the level constant for a given name.
DeviceLogger.level_name([level]) Return the name of the given level value.
DeviceLogger.log(level, msg, *args,
**kwargs)

Log a message and inform all clients.

DeviceLogger.log_to_python(logger, msg) Log a KATCP logging message to a Python logger.
DeviceLogger.next()
DeviceLogger.set_log_level(level) Set the logging level.
DeviceLogger.set_log_level_by_name(level_name)Set the logging level using a level name.
DeviceLogger.trace(msg, *args, **kwargs) Log a trace message.
DeviceLogger.warn(msg, *args, **kwargs) Log an warning message.

debug(msg, *args, **kwargs)
Log a debug message.

error(msg, *args, **kwargs)
Log an error message.

fatal(msg, *args, **kwargs)
Log a fatal error message.

info(msg, *args, **kwargs)
Log an info message.

level_from_name(level_name)
Return the level constant for a given name.

If the level_name is not known, raise a ValueError.

Parameters level_name : str or bytes

The logging level name whose logging level constant to retrieve.

Returns level : logging level constant

The logging level constant associated with the name.

1.2. Core API 71



KATCP Documentation, Release 0.0+unknown.202102020856

level_name(level=None)
Return the name of the given level value.

If level is None, return the name of the current level.

Parameters level : logging level constant

The logging level constant whose name to retrieve.

Returns level_name : str

The name of the logging level.

log(level, msg, *args, **kwargs)
Log a message and inform all clients.

Parameters level : logging level constant

The level to log the message at.

msg : str

The text format for the log message.

args : list of objects

Arguments to pass to log format string. Final message text is created using: msg %
args.

kwargs : additional keyword parameters

Allowed keywords are ‘name’ and ‘timestamp’. The name is the name of the logger to
log the message to. If not given the name defaults to the root logger. The timestamp is
a float in seconds. If not given the timestamp defaults to the current time.

classmethod log_to_python(logger, msg)
Log a KATCP logging message to a Python logger.

Parameters logger : logging.Logger object

The Python logger to log the given message to.

msg : Message object

The #log message to create a log entry from.

set_log_level(level)
Set the logging level.

Parameters level : logging level constant

The value to set the logging level to.

set_log_level_by_name(level_name)
Set the logging level using a level name.

Parameters level_name : str or bytes

The name of the logging level.

trace(msg, *args, **kwargs)
Log a trace message.

warn(msg, *args, **kwargs)
Log an warning message.

72 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Sensor

class katcp.Sensor(sensor_type, name, description=None, units=None, params=None, default=None,
initial_status=None)

Instantiate a new sensor object.

Subclasses will usually pass in a fixed sensor_type which should be one of the sensor type constants. The list
params if set will have its values formatted by the type formatter for the given sensor type.

Note: The LRU sensor type was deprecated in katcp 0.4.

Note: The ADDRESS sensor type was added in katcp 0.4.

Parameters sensor_type : Sensor type constant

The type of sensor.

name : str

The name of the sensor.

description : str, optional

A short description of the sensor.

units : str, optional

The units of the sensor value. May be the empty string if there are no applicable units.

params : list, optional

Additional parameters, dependent on the type of sensor:

• For INTEGER and FLOAT the list is optional. If provided, it should have two items,
providing the minimum and maximum that define the range of the sensor value, re-
spectively. The type of each item must be int, or float.

• For DISCRETE the list is required, and must contain all possible values the sensor
may take. There must be at least one item. The type of each item must be str or bytes.

• For all other types, params should be omitted.

default : object, optional

An initial value for the sensor. By default this is determined by the sensor type. For
INTEGER and FLOAT sensors, if no default is provided, but valid minimum and maxi-
mum parameters are, the default will be set to the minimum.

initial_status : int enum or None, optional

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

Methods

Sensor.address(name[, description, unit, . . . ]) Instantiate a new IP address sensor object.
Sensor.attach(observer) Attach an observer to this sensor.

Continued on next page

1.2. Core API 73



KATCP Documentation, Release 0.0+unknown.202102020856

Table 9 – continued from previous page
Sensor.boolean(name[, description, unit, . . . ]) Instantiate a new boolean sensor object.
Sensor.detach(observer) Detach an observer from this sensor.
Sensor.discrete(name[, description, unit,
. . . ])

Instantiate a new discrete sensor object.

Sensor.float(name[, description, unit, . . . ]) Instantiate a new float sensor object.
Sensor.format_reading(reading[, major]) Format sensor reading as (timestamp, status, value)

tuple of byte strings.
Sensor.integer(name[, description, unit, . . . ]) Instantiate a new integer sensor object.
Sensor.lru(name[, description, unit, . . . ]) Instantiate a new lru sensor object.
Sensor.notify(reading) Notify all observers of changes to this sensor.
Sensor.parse_params(sensor_type, . . . [, ma-
jor])

Parse KATCP formatted parameters into Python val-
ues.

Sensor.parse_type(type_string) Parse KATCP formatted type code into Sensor type
constant.

Sensor.parse_value(s_value[, katcp_major]) Parse a value from a byte string.
Sensor.read() Read the sensor and return a (timestamp, status,

value) tuple.
Sensor.read_formatted([major]) Read the sensor and return a (timestamp, status,

value) tuple.
Sensor.set(timestamp, status, value) Set the current value of the sensor.
Sensor.set_formatted(raw_timestamp, . . . [,
major])

Set the current value of the sensor.

Sensor.set_value(value[, status, timestamp,
. . . ])

Check and then set the value of the sensor.

Sensor.status() Read the current sensor status.
Sensor.string(name[, description, unit, . . . ]) Instantiate a new string sensor object.
Sensor.timestamp(name[, description, unit,
. . . ])

Instantiate a new timestamp sensor object.

Sensor.value() Read the current sensor value.

classmethod address(name, description=None, unit=”, default=None, initial_status=None)
Instantiate a new IP address sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

unit : str

The units of the sensor value. May be the empty string if there are no applicable units.

default : (string, int)

An initial value for the sensor. Tuple containing (host, port). default is (“0.0.0.0”, None)

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

attach(observer)
Attach an observer to this sensor.

74 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

The observer must support a call to observer.update(sensor, reading), where sensor is the sensor object
and reading is a (timestamp, status, value) tuple for this update (matching the return value of the read()
method).

Parameters observer : object

Object with an .update(sensor, reading) method that will be called when the sensor value
is set

classmethod boolean(name, description=None, unit=”, default=None, initial_status=None)
Instantiate a new boolean sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

unit : str

The units of the sensor value. May be the empty string if there are no applicable units.

default : bool

An initial value for the sensor. Defaults to False.

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

detach(observer)
Detach an observer from this sensor.

Parameters observer : object

The observer to remove from the set of observers notified when the sensor value is set.

classmethod discrete(name, description=None, unit=”, params=None, default=None, ini-
tial_status=None)

Instantiate a new discrete sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

unit : str

The units of the sensor value. May be the empty string if there are no applicable units.

params : [str]

Sequence of all allowable discrete sensor states

default : str

An initial value for the sensor. Defaults to the first item of params

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

1.2. Core API 75



KATCP Documentation, Release 0.0+unknown.202102020856

classmethod float(name, description=None, unit=”, params=None, default=None, ini-
tial_status=None)

Instantiate a new float sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

unit : str

The units of the sensor value. May be the empty string if there are no applicable units.

params : list

[min, max] – minimum and maximum values of the sensor

default : float

An initial value for the sensor. Defaults to 0.0.

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

format_reading(reading, major=5)
Format sensor reading as (timestamp, status, value) tuple of byte strings.

All values are strings formatted as specified in the Sensor Type Formats in the katcp specification.

Parameters reading : Reading object

Sensor reading as returned by read()

major : int

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Returns timestamp : bytes

KATCP formatted timestamp byte string

status : bytes

KATCP formatted sensor status byte string

value : bytes

KATCP formatted sensor value byte string

Notes

Should only be used for a reading obtained from the same sensor.

classmethod integer(name, description=None, unit=”, params=None, default=None, ini-
tial_status=None)

Instantiate a new integer sensor object.

Parameters name : str

The name of the sensor.

description : str

76 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

A short description of the sensor.

unit : str

The units of the sensor value. May be the empty string if there are no applicable units.

params : list

[min, max] – minimum and maximum values of the sensor

default : int

An initial value for the sensor. Defaults to 0.

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

classmethod lru(name, description=None, unit=”, default=None, initial_status=None)
Instantiate a new lru sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

unit : str

The units of the sensor value. May be the empty string if there are no applicable units.

default : enum, Sensor.LRU_*

An initial value for the sensor. Defaults to self.LRU_NOMINAL

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

notify(reading)
Notify all observers of changes to this sensor.

classmethod parse_params(sensor_type, formatted_params, major=5)
Parse KATCP formatted parameters into Python values.

Parameters sensor_type : Sensor type constant

The type of sensor the parameters are for.

formatted_params : list of byte strings

The formatted parameters that should be parsed.

major : int

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Returns params : list of objects

The parsed parameters.

classmethod parse_type(type_string)
Parse KATCP formatted type code into Sensor type constant.

1.2. Core API 77



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters type_string : str

KATCP formatted type code.

Returns sensor_type : Sensor type constant

The corresponding Sensor type constant.

parse_value(s_value, katcp_major=5)
Parse a value from a byte string.

Parameters s_value : bytes

A byte string value to attempt to convert to a value for the sensor.

Returns value : object

A value of a type appropriate to the sensor.

read()
Read the sensor and return a (timestamp, status, value) tuple.

Returns reading : Reading object

Sensor reading as a (timestamp, status, value) tuple.

read_formatted(major=5)
Read the sensor and return a (timestamp, status, value) tuple.

All values are byte strings formatted as specified in the Sensor Type Formats in the katcp specification.

Parameters major : int

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Returns timestamp : bytes

KATCP formatted timestamp byte string

status : bytes

KATCP formatted sensor status byte string

value : bytes

KATCP formatted sensor value byte string

set(timestamp, status, value)
Set the current value of the sensor.

Parameters timestamp : float in seconds

The time at which the sensor value was determined.

status : Sensor status constant

Whether the value represents an error condition or not.

value : object

The value of the sensor (the type should be appropriate to the sensor’s type).

set_formatted(raw_timestamp, raw_status, raw_value, major=5)
Set the current value of the sensor.

Parameters raw_timestamp : bytes

KATCP formatted timestamp byte string

78 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

raw_status : bytes

KATCP formatted sensor status byte string

raw_value : bytes

KATCP formatted sensor value byte string

major : int, default = 5

KATCP major version to use for interpreting the raw values

set_value(value, status=1, timestamp=None, major=5)
Check and then set the value of the sensor.

Parameters value : object

Value of the appropriate type for the sensor.

status : Sensor status constant

Whether the value represents an error condition or not.

timestamp : float in seconds or None

The time at which the sensor value was determined. Uses current time if None.

major : int

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

status()
Read the current sensor status.

Returns status : enum (int)

The status of the sensor, one of the keys in Sensor.STATUSES

classmethod string(name, description=None, unit=”, default=None, initial_status=None)
Instantiate a new string sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

unit : str

The units of the sensor value. May be the empty string if there are no applicable units.

default : string

An initial value for the sensor. Defaults to the empty string.

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

classmethod timestamp(name, description=None, unit=”, default=None, initial_status=None)
Instantiate a new timestamp sensor object.

Parameters name : str

The name of the sensor.

1.2. Core API 79



KATCP Documentation, Release 0.0+unknown.202102020856

description : str

A short description of the sensor.

unit: str :

The units of the sensor value. For timestamp sensor may only be the empty string.

default : string

An initial value for the sensor in seconds since the Unix Epoch. Defaults to 0.

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

value()
Read the current sensor value.

Returns value : object

The value of the sensor (the type will be appropriate to the sensor’s type).

Exceptions

class katcp.FailReply
Raised by request handlers to indicate a failure.

A custom exception which, when thrown in a request handler, causes DeviceServerBase to send a fail reply with
the specified fail message, bypassing the generic exception handling, which would send a fail reply with a full
traceback.

Examples

>>> class MyDevice(DeviceServer):
... def request_myreq(self, req, msg):
... raise FailReply("This request always fails.")
...

class katcp.AsyncReply
Raised by a request handlers to indicate it will reply later.

A custom exception which, when thrown in a request handler, indicates to DeviceServerBase that no reply has
been returned by the handler but that the handler has arranged for a reply message to be sent at a later time.

Examples

>>> class MyDevice(DeviceServer):
... def request_myreq(self, req, msg):
... self.callback_client.request(
... Message.request("otherreq"),
... reply_cb=self._send_reply,
... )
... raise AsyncReply()
...

80 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

class katcp.KatcpDeviceError
Raised by KATCP servers when errors occur.

Changed in version 0.1: Deprecated in 0.1. Servers should not raise errors if communication with a client fails
– errors are simply logged instead.

1.2.3 High Level Clients

KATCPClientResource

class katcp.KATCPClientResource(resource_spec, parent=None, logger=<logging.Logger ob-
ject>)

Class managing a client connection to a single KATCP resource

Inspects the KATCP interface of the resources, exposing sensors and requests as per the katcp.resource.
KATCPResource API. Can also operate without exposing

Methods

KATCPClientResource.
drop_sampling_strategy(. . . )

Drop the sampling strategy for the named sensor
from the cache

KATCPClientResource.
inspecting_client_factory(. . . )

Return an instance of
ReplyWrappedInspectingClientAsync or
similar

KATCPClientResource.is_active()
KATCPClientResource.is_connected() Indication of the connection state
KATCPClientResource.
list_sensors([filter, . . . ])

List sensors available on this resource matching cer-
tain criteria.

KATCPClientResource.next()
KATCPClientResource.
set_active(active)
KATCPClientResource.
set_ioloop([ioloop])

Set the tornado ioloop to use

KATCPClientResource.
set_sampling_strategies(. . . )

Set a strategy for all sensors matching the filter, in-
cluding unseen sensors The strategy should persist
across sensor disconnect/reconnect.

KATCPClientResource.
set_sampling_strategy(. . . )

Set a strategy for a sensor even if it is not yet known.

KATCPClientResource.
set_sensor_listener(**kwargs)

Set a sensor listener for a sensor even if it is not yet
known The listener registration should persist across
sensor disconnect/reconnect.

KATCPClientResource.start() Start the client and connect
KATCPClientResource.stop()
KATCPClientResource.
until_not_synced([timeout])

Convenience method to wait (with Future) until
client is not synced

KATCPClientResource.
until_state(state[, timeout])

Future that resolves when a certain client state is at-
tained

KATCPClientResource.
until_stopped([timeout])

Return future that resolves when the inspecting client
has stopped

KATCPClientResource.
until_synced([timeout])

Convenience method to wait (with Future) until
client is synced

Continued on next page

1.2. Core API 81



KATCP Documentation, Release 0.0+unknown.202102020856

Table 10 – continued from previous page
KATCPClientResource.wait(**kwargs) Wait for a sensor in this resource to satisfy a condi-

tion.
KATCPClientResource.
wait_connected([timeout])

Future that resolves when the state is not ‘discon-
nected’.

MAX_LOOP_LATENCY = 0.03
When doing potentially tight loops in coroutines yield tornado.gen.moment after this much time. This is a
suggestion for methods to use.

drop_sampling_strategy(sensor_name)
Drop the sampling strategy for the named sensor from the cache

Calling set_sampling_strategy() requires the requested strategy to be memorised so that it can
automatically be reapplied. This method causes the strategy to be forgotten. There is no change to the
current strategy. No error is raised if there is no strategy to drop.

Parameters sensor_name : str

Name of the sensor

inspecting_client_factory(host, port, ioloop_set_to)
Return an instance of ReplyWrappedInspectingClientAsync or similar

Provided to ease testing. Dynamically overriding this method after instantiation but be-
fore start() is called allows for deep brain surgery. See katcp.fake_clients.
fake_inspecting_client_factory

is_connected()
Indication of the connection state

Returns True if state is not “disconnected”, i.e “syncing” or “synced”

list_sensors(filter=”, strategy=False, status=”, use_python_identifiers=True, tuple=False, re-
fresh=False)

List sensors available on this resource matching certain criteria.

Parameters filter : string, optional

Filter each returned sensor’s name against this regexp if specified. To ease the
dichotomy between Python identifier names and actual sensor names, the default
is to search on Python identifier names rather than KATCP sensor names, unless
use_python_identifiers below is set to False. Note that the sensors of subordinate
KATCPResource instances may have inconsistent names and Python identifiers, better
to always search on Python identifiers in this case.

strategy : {False, True}, optional

Only list sensors with a set strategy if True

status : string, optional

Filter each returned sensor’s status against this regexp if given

use_python_identifiers : {True, False}, optional

Match on python identifiers even the the KATCP name is available.

tuple : {True, False}, optional, Default: False

Return backwards compatible tuple instead of SensorResultTuples

refresh : {True, False}, optional, Default: False

82 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

If set the sensor values will be refreshed with get_value before returning the results.

Returns sensors : list of SensorResultTuples, or list of tuples

List of matching sensors presented as named tuples. The object field is the
KATCPSensor object associated with the sensor. Note that the name of the object
may not match name if it originates from a subordinate device.

set_ioloop(ioloop=None)
Set the tornado ioloop to use

Defaults to tornado.ioloop.IOLoop.current() if set_ioloop() is not called or if ioloop=None. Must be called
before start()

set_sampling_strategies(**kwargs)
Set a strategy for all sensors matching the filter, including unseen sensors The strategy should persist across
sensor disconnect/reconnect.

filter [str] Filter for sensor names

strategy_and_params [seq of str or str] As tuple contains (<strat_name>, [<strat_parm1>, . . . ]) where
the strategy names and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns done : tornado Future

Resolves when done

set_sampling_strategy(**kwargs)
Set a strategy for a sensor even if it is not yet known. The strategy should persist across sensor discon-
nect/reconnect.

sensor_name [str] Name of the sensor

strategy_and_params [seq of str or str] As tuple contains (<strat_name>, [<strat_parm1>, . . . ]) where
the strategy names and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns done : tornado Future

Resolves when done

set_sensor_listener(**kwargs)
Set a sensor listener for a sensor even if it is not yet known The listener registration should persist across
sensor disconnect/reconnect.

sensor_name [str] Name of the sensor

listener [callable] Listening callable that will be registered on the named sensor when it becomes avail-
able. Callable as for KATCPSensor.register_listener()

start()
Start the client and connect

until_not_synced(timeout=None)
Convenience method to wait (with Future) until client is not synced

until_state(state, timeout=None)
Future that resolves when a certain client state is attained

Parameters state : str

Desired state, one of (“disconnected”, “syncing”, “synced”)

1.2. Core API 83



KATCP Documentation, Release 0.0+unknown.202102020856

timeout: float :

Timeout for operation in seconds.

until_stopped(timeout=None)
Return future that resolves when the inspecting client has stopped

See the DeviceClient.until_stopped docstring for parameter definitions and more info.

until_synced(timeout=None)
Convenience method to wait (with Future) until client is synced

wait(**kwargs)
Wait for a sensor in this resource to satisfy a condition.

Parameters sensor_name : string

The name of the sensor to check

condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading) is
called, and must return True if its condition is satisfied. Since the reading is passed
in, the value, status, timestamp or received_timestamp attributes can all be used in the
check.

timeout : float or None

The timeout in seconds (None means wait forever)

Returns This command returns a tornado Future that resolves with True when the :

sensor value satisfies the condition, or False if the condition is :

still not satisfied after a given timeout period. :

Raises :class:‘KATCPSensorError‘ :

If the sensor does not have a strategy set, or if the named sensor is not present

wait_connected(timeout=None)
Future that resolves when the state is not ‘disconnected’.

KATCPClientResourceContainer

class katcp.KATCPClientResourceContainer(resources_spec, logger=<logging.Logger ob-
ject>)

Class for containing multiple KATCPClientResource instances.

Provides aggregate sensor and req attributes containing the union of all the sensors in requests in the contained
resources. Names are prefixed with <resname>_, where <resname> is the name of the resource to which the
sensor / request belongs except for aggregate sensors that starts with agg_.

Methods

KATCPClientResourceContainer.
add_child_resource_client(. . . )

Add a resource client to the container and start the
resource connection

KATCPClientResourceContainer.
add_group(. . . )

Add a new ClientGroup to container groups
member.

Continued on next page

84 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 11 – continued from previous page
KATCPClientResourceContainer.
client_resource_factory(. . . )

Return an instance of KATCPClientResource or
similar

KATCPClientResourceContainer.
is_active()
KATCPClientResourceContainer.
is_connected()

Indication of the connection state of all children

KATCPClientResourceContainer.
list_sensors([. . . ])

List sensors available on this resource matching cer-
tain criteria.

KATCPClientResourceContainer.next()
KATCPClientResourceContainer.
set_active(active)
KATCPClientResourceContainer.
set_ioloop([ioloop])

Set the tornado ioloop to use

KATCPClientResourceContainer.
set_sampling_strategies(. . . )

Set sampling strategies for filtered sensors - these
sensors have to exists.

KATCPClientResourceContainer.
set_sampling_strategy(. . . )

Set sampling strategies for the specific sensor - this
sensor has to exist

KATCPClientResourceContainer.
set_sensor_listener(. . . )

Set listener for the specific sensor - this sensor has to
exists.

KATCPClientResourceContainer.
start()

Start and connect all the subordinate clients

KATCPClientResourceContainer.stop() Stop all child resources
KATCPClientResourceContainer.
until_all_children_in_state(. . . )

Return a tornado Future; resolves when all clients are
in specified state

KATCPClientResourceContainer.
until_any_child_in_state(state)

Return a tornado Future; resolves when any client is
in specified state

KATCPClientResourceContainer.
until_not_synced(. . . )

Return a tornado Future; resolves when any subordi-
nate client is not synced

KATCPClientResourceContainer.
until_stopped([. . . ])

Return dict of futures that resolve when each child
resource has stopped

KATCPClientResourceContainer.
until_synced(. . . )

Return a tornado Future; resolves when all subordi-
nate clients are synced

KATCPClientResourceContainer.
wait(. . . [, timeout])

Wait for a sensor in this resource to satisfy a condi-
tion.

add_child_resource_client(res_name, res_spec)
Add a resource client to the container and start the resource connection

add_group(group_name, group_client_names)
Add a new ClientGroup to container groups member.

Add the group named group_name with sequence of client names to the container groups member. From
there it will be wrapped appropriately in the higher-level thread-safe container.

client_resource_factory(res_spec, parent, logger)
Return an instance of KATCPClientResource or similar

Provided to ease testing. Overriding this method allows deep brain surgery. See katcp.
fake_clients.fake_KATCP_client_resource_factory()

is_connected()
Indication of the connection state of all children

list_sensors(filter=”, strategy=False, status=”, use_python_identifiers=True, tuple=False, re-
fresh=False)

1.2. Core API 85



KATCP Documentation, Release 0.0+unknown.202102020856

List sensors available on this resource matching certain criteria.

Parameters filter : string, optional

Filter each returned sensor’s name against this regexp if specified. To ease the
dichotomy between Python identifier names and actual sensor names, the default
is to search on Python identifier names rather than KATCP sensor names, unless
use_python_identifiers below is set to False. Note that the sensors of subordinate
KATCPResource instances may have inconsistent names and Python identifiers, better
to always search on Python identifiers in this case.

strategy : {False, True}, optional

Only list sensors with a set strategy if True

status : string, optional

Filter each returned sensor’s status against this regexp if given

use_python_identifiers : {True, False}, optional

Match on python identifiers even the the KATCP name is available.

tuple : {True, False}, optional, Default: False

Return backwards compatible tuple instead of SensorResultTuples

refresh : {True, False}, optional, Default: False

If set the sensor values will be refreshed with get_value before returning the results.

Returns sensors : list of SensorResultTuples, or list of tuples

List of matching sensors presented as named tuples. The object field is the
KATCPSensor object associated with the sensor. Note that the name of the object
may not match name if it originates from a subordinate device.

set_ioloop(ioloop=None)
Set the tornado ioloop to use

Defaults to tornado.ioloop.IOLoop.current() if set_ioloop() is not called or if ioloop=None. Must be called
before start()

set_sampling_strategies(**kwargs)
Set sampling strategies for filtered sensors - these sensors have to exists.

set_sampling_strategy(**kwargs)
Set sampling strategies for the specific sensor - this sensor has to exist

set_sensor_listener(**kwargs)
Set listener for the specific sensor - this sensor has to exists.

start()
Start and connect all the subordinate clients

stop()
Stop all child resources

until_all_children_in_state(**kwargs)
Return a tornado Future; resolves when all clients are in specified state

until_any_child_in_state(state, timeout=None)
Return a tornado Future; resolves when any client is in specified state

until_not_synced(**kwargs)
Return a tornado Future; resolves when any subordinate client is not synced

86 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

until_stopped(timeout=None)
Return dict of futures that resolve when each child resource has stopped

See the DeviceClient.until_stopped docstring for parameter definitions and more info.

until_synced(**kwargs)
Return a tornado Future; resolves when all subordinate clients are synced

wait(sensor_name, condition_or_value, timeout=5)
Wait for a sensor in this resource to satisfy a condition.

Parameters sensor_name : string

The name of the sensor to check

condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading) is
called, and must return True if its condition is satisfied. Since the reading is passed
in, the value, status, timestamp or received_timestamp attributes can all be used in the
check.

timeout : float or None

The timeout in seconds (None means wait forever)

Returns This command returns a tornado Future that resolves with True when the :

sensor value satisfies the condition, or False if the condition is :

still not satisfied after a given timeout period. :

Raises :class:‘KATCPSensorError‘ :

If the sensor does not have a strategy set, or if the named sensor is not present

1.2.4 Message Parsing

Message

class katcp.Message(mtype, name, arguments=None, mid=None)
Represents a KAT device control language message.

Parameters mtype : Message type constant

The message type (request, reply or inform).

name : str

The message name.

arguments : list of objects (float, int, bool, bytes, or str)

The message arguments.

mid : str or bytes (digits only), int, or None

The message identifier. Replies and informs that are part of the reply to a request should
have the same id as the request did.

Methods

1.2. Core API 87



KATCP Documentation, Release 0.0+unknown.202102020856

Message.copy() Return a shallow copy of the message object and its
arguments.

Message.format_argument(arg) Format a Message argument to a byte string
Message.inform(name, *args, **kwargs) Helper method for creating inform messages.
Message.reply(name, *args, **kwargs) Helper method for creating reply messages.
Message.reply_inform(req_msg, *args) Helper method for creating inform messages in reply

to a request.
Message.reply_ok() Return True if this is a reply and its first argument is

‘ok’.
Message.reply_to_request(req_msg,
*args)

Helper method for creating reply messages to a spe-
cific request.

Message.request(name, *args, **kwargs) Helper method for creating request messages.

copy()
Return a shallow copy of the message object and its arguments.

Returns msg : Message

A copy of the message object.

format_argument(arg)
Format a Message argument to a byte string

classmethod inform(name, *args, **kwargs)
Helper method for creating inform messages.

Parameters name : str

The name of the message.

args : list of objects (float, int, bool, bytes, or str)

The message arguments.

Keyword Arguments mid : str or bytes (digits only), int, or None

Message ID to use or None (default) for no Message ID

classmethod reply(name, *args, **kwargs)
Helper method for creating reply messages.

Parameters name : str

The name of the message.

args : list of objects (float, int, bool, bytes, or str)

The message arguments.

Keyword Arguments mid : str or bytes (digits only), int, or None

Message ID to use or None (default) for no Message ID

classmethod reply_inform(req_msg, *args)
Helper method for creating inform messages in reply to a request.

Copies the message name and message identifier from request message.

Parameters req_msg : katcp.core.Message instance

The request message that this inform if in reply to

args : list of objects (float, int, bool, bytes, or str)

88 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

The message arguments except name

reply_ok()
Return True if this is a reply and its first argument is ‘ok’.

classmethod reply_to_request(req_msg, *args)
Helper method for creating reply messages to a specific request.

Copies the message name and message identifier from request message.

Parameters req_msg : katcp.core.Message instance

The request message that this inform if in reply to

args : list of objects (float, int, bool, bytes, or str)

The message arguments.

classmethod request(name, *args, **kwargs)
Helper method for creating request messages.

Parameters name : str

The name of the message.

args : list of objects (float, int, bool, bytes, or str)

The message arguments.

Keyword Arguments mid : str or bytes (digits only), int, or None

Message ID to use or None (default) for no Message ID

MessageParser

class katcp.MessageParser
Parses lines into Message objects.

Methods

MessageParser.parse(line) Parse a line, return a Message.

parse(line)
Parse a line, return a Message.

Parameters line : bytes

The line to parse (should not contain the terminating newline or carriage return).

Returns msg : Message object

The resulting Message.

Exceptions

class katcp.KatcpSyntaxError
Raised by parsers when encountering a syntax error.

1.2. Core API 89



KATCP Documentation, Release 0.0+unknown.202102020856

1.2.5 Other

DeviceMetaclass

class katcp.DeviceMetaclass(name, bases, dct)
Metaclass for DeviceServer and DeviceClient classes.

Collects up methods named request_* and adds them to a dictionary of supported methods on the class. All
request_* methods must have a doc string so that help can be generated. The same is done for inform_* and
reply_* methods.

Methods

DeviceMetaclass.
check_protocol(handler)

Return False if handler should be filtered

DeviceMetaclass.mro() return a type’s method resolution order

check_protocol(handler)
Return False if handler should be filtered

1.2.6 Version Information

katcp.VERSION

Five-element tuple containing the version number.

katcp.VERSION_STR

String representing the version number.

1.3 Kattypes

Utilities for dealing with KATCP types.

class katcp.kattypes.Address(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

The KATCP address type.

Note: The address type was added in katcp 0.4.

Methods

Address.check(value, major) Check whether the value is valid.
Address.decode(value, major)
Address.encode(value, major)
Address.get_default() Return the default value.
Address.next()

Continued on next page

90 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 15 – continued from previous page
Address.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Address.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.Bool(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

The KATCP boolean type.

Methods

Bool.check(value, major) Check whether the value is valid.
Bool.decode(value, major)
Bool.encode(value, major)
Bool.get_default() Return the default value.
Bool.next()
Bool.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Bool.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.Discrete(values, case_insensitive=False, **kwargs)
Bases: katcp.kattypes.Str

The KATCP discrete type.

Parameters values : iterable of str

List of the values the discrete type may accept.

case_insensitive : bool

Whether case-insensitive value matching should be used.

Methods

Discrete.check(value, major) Check whether the value in the set of allowed values.
Discrete.decode(value, major)
Discrete.encode(value, major)
Discrete.get_default() Return the default value.
Discrete.next()
Discrete.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Discrete.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

check(value, major)
Check whether the value in the set of allowed values.

Raise a ValueError if it is not.

class katcp.kattypes.DiscreteMulti(values, all_keyword=’all’, separator=’, ’, **kwargs)
Bases: katcp.kattypes.Discrete

Discrete type which can accept multiple values.

Its value is always a list.

Parameters values : list of str

1.3. Kattypes 91



KATCP Documentation, Release 0.0+unknown.202102020856

Set of allowed values.

all_keyword : str, optional

The string which represents the list of all allowed values.

separator : str, optional

The separator used in the packed value string.

Methods

DiscreteMulti.check(value, major) Check that each item in the value list is in the allowed
set.

DiscreteMulti.decode(value, major)
DiscreteMulti.encode(value, major)
DiscreteMulti.get_default() Return the default value.
DiscreteMulti.next()
DiscreteMulti.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
DiscreteMulti.unpack(packed_value[, ma-
jor])

Parse a KATCP parameter into an object.

check(value, major)
Check that each item in the value list is in the allowed set.

class katcp.kattypes.Float(min=None, max=None, **kwargs)
Bases: katcp.kattypes.KatcpType

The KATCP float type.

Parameters min : float

The minimum allowed value. Ignored if not given.

max : float

The maximum allowed value. Ignored if not given.

Methods

Float.check(value, major) Check whether the value is between the minimum
and maximum.

Float.decode(value, major)
Float.encode(value, major)
Float.get_default() Return the default value.
Float.next()
Float.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Float.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

check(value, major)
Check whether the value is between the minimum and maximum.

Raise a ValueError if it is not.

class katcp.kattypes.Int(min=None, max=None, **kwargs)
Bases: katcp.kattypes.KatcpType

92 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

The KATCP integer type.

Parameters min : int

The minimum allowed value. Ignored if not given.

max : int

The maximum allowed value. Ignored if not given.

Methods

Int.check(value, major) Check whether the value is between the minimum
and maximum.

Int.decode(value, major)
Int.encode(value, major)
Int.get_default() Return the default value.
Int.next()
Int.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Int.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

check(value, major)
Check whether the value is between the minimum and maximum.

Raise a ValueError if it is not.

class katcp.kattypes.KatcpType(default=None, optional=False, multiple=False)
Bases: future.types.newobject.newobject

Class representing a KATCP type.

Sub-classes should:

• Set the name attribute.

• Implement the encode() method.

• Implement the decode() method.

Parameters default : object, optional

The default value for this type.

optional : boolean, optional

Whether the value is allowed to be None.

multiple : boolean, optional

Whether multiple values of this type are expected. Must be the last type parameter if
this is True.

Methods

KatcpType.check(value, major) Check whether the value is valid.
KatcpType.get_default() Return the default value.
KatcpType.next()

Continued on next page

1.3. Kattypes 93



KATCP Documentation, Release 0.0+unknown.202102020856

Table 21 – continued from previous page
KatcpType.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
KatcpType.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

check(value, major)
Check whether the value is valid.

Do nothing if the value is valid. Raise an exception if the value is not valid. Parameter major describes the
KATCP major version to use when interpreting the validity of a value.

get_default()
Return the default value.

Raise a ValueError if the value is not optional and there is no default.

Returns default : object

The default value.

pack(value, nocheck=False, major=5)
Return the value formatted as a KATCP parameter.

Parameters value : object

The value to pack.

nocheck : bool, optional

Whether to check that the value is valid before packing it.

major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Returns packed_value : bytes

The unescaped KATCP byte string representing the value.

unpack(packed_value, major=5)
Parse a KATCP parameter into an object.

Parameters packed_value : bytes

The unescaped KATCP byte string to parse into a value.

major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Returns value : object

The value the KATCP string represented.

class katcp.kattypes.Lru(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

The KATCP lru type

Methods

94 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Lru.check(value, major) Check whether the value is valid.
Lru.decode(value, major)
Lru.encode(value, major)
Lru.get_default() Return the default value.
Lru.next()
Lru.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Lru.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.Parameter(position, name, kattype, major)
Bases: future.types.newobject.newobject

Wrapper for kattypes which holds parameter-specific information.

Parameters position : int

The parameter’s position (starts at 1)

name : str

The parameter’s name (introspected)

kattype : KatcpType object

The parameter’s kattype

major : integer

Major version of KATCP to use when interpreting types

Methods

Parameter.next()
Parameter.pack(value) Pack the parameter using its kattype.
Parameter.unpack(value) Unpack the parameter using its kattype.

pack(value)
Pack the parameter using its kattype.

Parameters value : object

The value to pack

Returns packed_value : str

The unescaped KATCP string representing the value.

unpack(value)
Unpack the parameter using its kattype.

Parameters packed_value : str

The unescaped KATCP string to unpack.

Returns value : object

The unpacked value.

class katcp.kattypes.Regex(regex, **kwargs)
Bases: katcp.kattypes.Str

String type that checks values using a regular expression.

1.3. Kattypes 95



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters regex : str or regular expression object

Regular expression that values should match.

Methods

Regex.check(value, major) Check whether the value is valid.
Regex.decode(value, major)
Regex.encode(value, major)
Regex.get_default() Return the default value.
Regex.next()
Regex.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Regex.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

check(value, major)
Check whether the value is valid.

Do nothing if the value is valid. Raise an exception if the value is not valid. Parameter major describes the
KATCP major version to use when interpreting the validity of a value.

class katcp.kattypes.Str(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

The KATCP string type.

Notes

The behaviour of this type is subtly different between Python versions in order to ease the porting effort for
users of this library. - Unpacked (decoded) values are native strings (bytes in PY2, Unicode in PY3). - Packed
(encoded) values are always byte strings (in both PY2 and PY3), as this is what is sent on the wire.

UTF-8 encoding is used when converting between Unicode and byte strings. Thus ASCII values are fine, but
arbitrary strings of bytes are not safe to use, and may raise an exception.

For convenience, non-text types can be encoded. The object is converted to a string, and then to bytes. This is a
one-way operation - when that byte string is decoded the original type will not be recovered.

Methods

Str.check(value, major) Check whether the value is valid.
Str.decode(value, major)
Str.encode(value, major)
Str.get_default() Return the default value.
Str.next()
Str.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Str.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.StrictTimestamp(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

A timestamp that enforces the XXXX.YYY format for timestamps.

96 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Methods

StrictTimestamp.check(value, major) Check whether the value is positive.
StrictTimestamp.decode(value, major)
StrictTimestamp.encode(value, major)
StrictTimestamp.get_default() Return the default value.
StrictTimestamp.next()
StrictTimestamp.pack(value[, nocheck, ma-
jor])

Return the value formatted as a KATCP parameter.

StrictTimestamp.unpack(packed_value[,
major])

Parse a KATCP parameter into an object.

check(value, major)
Check whether the value is positive.

Raise a ValueError if it is not.

class katcp.kattypes.Struct(fmt, **kwargs)
Bases: katcp.kattypes.KatcpType

KatcpType for parsing and packing values using the struct module.

Parameters fmt : str

Format to use for packing and unpacking values. It is passed directly into struct.
pack() and struct.unpack().

Methods

Struct.check(value, major) Check whether the value is valid.
Struct.decode(value, major)
Struct.encode(value, major)
Struct.get_default() Return the default value.
Struct.next()
Struct.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Struct.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.Timestamp(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

The KATCP timestamp type.

Methods

Timestamp.check(value, major) Check whether the value is valid.
Timestamp.decode(value, major)
Timestamp.encode(value, major)
Timestamp.get_default() Return the default value.
Timestamp.next()
Timestamp.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Timestamp.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

1.3. Kattypes 97



KATCP Documentation, Release 0.0+unknown.202102020856

class katcp.kattypes.TimestampOrNow(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.Timestamp

KatcpType representing either a Timestamp or the special value for now.

Floats are encoded as for katcp.kattypes.Timestamp. The special value for now, katcp.kattypes.
TimestampOrNow.NOW, is encoded as the string “now”.

Methods

TimestampOrNow.check(value, major) Check whether the value is valid.
TimestampOrNow.decode(value, major)
TimestampOrNow.encode(value, major)
TimestampOrNow.get_default() Return the default value.
TimestampOrNow.next()
TimestampOrNow.pack(value[, nocheck, ma-
jor])

Return the value formatted as a KATCP parameter.

TimestampOrNow.unpack(packed_value[, ma-
jor])

Parse a KATCP parameter into an object.

katcp.kattypes.async_make_reply(*args, **kwargs)
Wrap future that will resolve with arguments needed by make_reply().

katcp.kattypes.concurrent_reply(handler)
Decorator for concurrent async request handlers

By default async request handlers that return a Future are serialised per-connection, i.e. until the most recent
handler resolves its future, the next message will not be read from the client stream. A handler decorated with
this decorator allows the next message to be read before it has resolved its future, allowing multiple requests
from a single client to be handled concurrently. This is similar to raising AsyncReply.

Examples

>>> class MyDevice(DeviceServer):
... @return_reply(Int())
... @concurrent_reply
... @tornado.gen.coroutine
... def request_myreq(self, req):
... '''A slow request'''
... result = yield self.slow_operation()
... raise tornado.gen.Return((req, result))
...

katcp.kattypes.has_katcp_protocol_flags(protocol_flags)
Decorator; only include handler if server has these protocol flags

Useful for including default handler implementations for KATCP features that are only present when certain
server protocol flags are set.

Examples

98 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

>>> class MyDevice(DeviceServer):
... '''This device server will expose ?myreq'''
... PROTOCOL_INFO = katcp.core.ProtocolFlags(5, 0, [

katcp.core.ProtocolFlags.MULTI_CLIENT])
...
... @has_katcp_protocol_flags([katcp.core.ProtocolFlags.MULTI_CLIENT])
... def request_myreq(self, req, msg):
... '''A request that requires multi-client support'''
... # Request handler implementation here.
...
>>> class MySingleClientDevice(MyDevice):
... '''This device server will not expose ?myreq'''
...
... PROTOCOL_INFO = katcp.core.ProtocolFlags(5, 0, [])
...

katcp.kattypes.inform()
Decorator for inform handler methods.

The method being decorated should take arguments matching the list of types. The decorator will unpack the
request message into the arguments.

Parameters types : list of kattypes

The types of the request message parameters (in order). A type with multiple=True has
to be the last type.

Keyword Arguments include_msg : bool, optional

Pass the request message as the third parameter to the decorated request handler function
(default is False).

major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Examples

>>> class MyDeviceClient(katcp.client.AsyncClient):
... @inform(Int(), Float())
... def inform_myinf(self, my_int, my_float):
... '''Handle #myinf <my_int> <my_float> inform received from server'''
... # Call some code here that reacts to my_inf and my_float

katcp.kattypes.make_reply(msgname, types, arguments, major)
Helper method for constructing a reply message from a list or tuple.

Parameters msgname : str

Name of the reply message.

types : list of kattypes

The types of the reply message parameters (in order).

arguments : list of objects

The (unpacked) reply message parameters.

major : integer

1.3. Kattypes 99



KATCP Documentation, Release 0.0+unknown.202102020856

Major version of KATCP to use when packing types

katcp.kattypes.minimum_katcp_version(major, minor=0)
Decorator; exclude handler if server’s protocol version is too low

Useful for including default handler implementations for KATCP features that are only present in certain KATCP
protocol versions

Examples

>>> class MyDevice(DeviceServer):
... '''This device server will expose ?myreq'''
... PROTOCOL_INFO = katcp.core.ProtocolFlags(5, 1)
...
... @minimum_katcp_version(5, 1)
... def request_myreq(self, req, msg):
... '''A request that should only be present for KATCP >v5.1'''
... # Request handler implementation here.
...
>>> class MyOldDevice(MyDevice):
... '''This device server will not expose ?myreq'''
...
... PROTOCOL_INFO = katcp.core.ProtocolFlags(5, 0)
...

katcp.kattypes.pack_types(types, args, major)
Pack arguments according the the types list.

Parameters types : sequence of kattypes

The types of the arguments (in order).

args : sequence of objects

The arguments to format.

major : integer

Major version of KATCP to use when packing types

Returns packed_args : list

List of args after packing to byte strings

katcp.kattypes.request(*types, **options)
Decorator for request handler methods.

The method being decorated should take a req argument followed by arguments matching the list of types. The
decorator will unpack the request message into the arguments.

Parameters types : list of kattypes

The types of the request message parameters (in order). A type with multiple=True has
to be the last type.

Keyword Arguments include_msg : bool, optional

Pass the request message as the third parameter to the decorated request handler function
(default is False).

major : int, optional

100 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Examples

>>> class MyDevice(DeviceServer):
... @request(Int(), Float(), Bool())
... @return_reply(Int(), Float())
... def request_myreq(self, req, my_int, my_float, my_bool):
... '''?myreq my_int my_float my_bool'''
... return ("ok", my_int + 1, my_float / 2.0)
...
... @request(Int(), include_msg=True)
... @return_reply(Bool())
... def request_is_odd(self, req, msg, my_int):

'''?is-odd <my_int>, reply '1' if <my_int> is odd, else 0'''
... req.inform('Checking oddity of %d' % my_int)
... return ("ok", my_int % 2)
...

katcp.kattypes.request_timeout_hint(timeout_hint)
Decorator; add recommended client timeout hint to a request for request

Useful for requests that take longer than average to reply. Hint is provided to clients via ?request-timeout-hint.
Note this is only exposed if the device server sets the protocol version to KATCP v5.1 or higher and enables the
REQUEST_TIMEOUT_HINTS flag in its PROTOCOL_INFO class attribute

Parameters timeout_hint : float (seconds) or None

How long the decorated request should reasonably take to reply. No timeout hint if
None, similar to never using the decorator, provided for consistency.

Examples

>>> class MyDevice(DeviceServer):
... @return_reply(Int())
... @request_timeout_hint(15) # Set request timeout hint to 15 seconds
... @tornado.gen.coroutine
... def request_myreq(self, req):
... '''A slow request'''
... result = yield self.slow_operation()
... raise tornado.gen.Return((req, result))
...

katcp.kattypes.return_reply(*types, **options)
Decorator for returning replies from request handler methods.

The method being decorated should return an iterable of result values. If the first value is ‘ok’, the decorator
will check the remaining values against the specified list of types (if any). If the first value is ‘fail’ or ‘error’,
there must be only one remaining parameter, and it must be a string describing the failure or error In both cases,
the decorator will pack the values into a reply message.

Parameters types : list of kattypes

The types of the reply message parameters (in order).

Keyword Arguments major : int, optional

1.3. Kattypes 101



KATCP Documentation, Release 0.0+unknown.202102020856

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Examples

>>> class MyDevice(DeviceServer):
... @request(Int())
... @return_reply(Int(), Float())
... def request_myreq(self, req, my_int):
... return ("ok", my_int + 1, my_int * 2.0)
...

katcp.kattypes.send_reply(*types, **options)
Decorator for sending replies from request callback methods.

This decorator constructs a reply from a list or tuple returned from a callback method, but unlike the return_reply
decorator it also sends the reply rather than returning it.

The list/tuple returned from the callback method must have req (a ClientRequestConnection instance) as its first
parameter and the original message as the second. The original message is needed to determine the message
name and ID.

The device with the callback method must have a reply method.

Parameters types : list of kattypes

The types of the reply message parameters (in order).

Keyword Arguments major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Examples

>>> class MyDevice(DeviceServer):
... @send_reply(Int(), Float())
... def my_callback(self, req):
... return (req, "ok", 5, 2.0)
...

katcp.kattypes.unpack_message()
Decorator that unpacks katcp.Messages to function arguments.

The method being decorated should take arguments matching the list of types. The decorator will unpack the
request message into the arguments.

Parameters types : list of kattypes

The types of the request message parameters (in order). A type with multiple=True has
to be the last type.

Keyword Arguments include_msg : bool, optional

Pass the request message as the third parameter to the decorated request handler function
(default is False).

major : int, optional

102 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Examples

>>> class MyClient(DeviceClient):
... @unpack_message(Str(), Int(), Float(), Bool())
... def reply_myreq(self, status, my_int, my_float, my_bool):
... print 'myreq replied with ', (status, my_int, my_float, my_bool)
...
... @unpack_message(Str(), Int(), include_msg=True)
... def inform_fruit_picked(self, msg, fruit, no_picked):
... print no_picked, 'of fruit ', fruit, ' picked.'
... print 'Raw inform message: ', str(msg)

katcp.kattypes.unpack_types(types, args, argnames, major)
Parse arguments according to types list.

Parameters types : sequence of kattypes

The types of the arguments (in order).

args : sequence of strings

The arguments to parse.

argnames : sequence of strings

The names of the arguments.

major : integer

Major version of KATCP to use when packing types

Returns unpacked_args : list

List of args after unpacking to kattype objects

katcp.kattypes.unpack_message()
Decorator that unpacks katcp.Messages to function arguments.

The method being decorated should take arguments matching the list of types. The decorator will unpack the
request message into the arguments.

Parameters types : list of kattypes

The types of the request message parameters (in order). A type with multiple=True has
to be the last type.

Keyword Arguments include_msg : bool, optional

Pass the request message as the third parameter to the decorated request handler function
(default is False).

major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

1.3. Kattypes 103



KATCP Documentation, Release 0.0+unknown.202102020856

Examples

>>> class MyClient(DeviceClient):
... @unpack_message(Str(), Int(), Float(), Bool())
... def reply_myreq(self, status, my_int, my_float, my_bool):
... print 'myreq replied with ', (status, my_int, my_float, my_bool)
...
... @unpack_message(Str(), Int(), include_msg=True)
... def inform_fruit_picked(self, msg, fruit, no_picked):
... print no_picked, 'of fruit ', fruit, ' picked.'
... print 'Raw inform message: ', str(msg)

1.4 Low level client API (client)

Clients for the KAT device control language.

class katcp.client.AsyncClient(host, port, tb_limit=20, timeout=5.0, logger=<logging.Logger
object>, auto_reconnect=True)

Bases: katcp.client.DeviceClient

Implement async and callback-based requests on top of DeviceClient.

This client will use message IDs if the server supports them.

Parameters host : string

Host to connect to.

port : int

Port to connect to.

tb_limit : int, optional

Maximum number of stack frames to send in error traceback.

logger : object, optional

Python Logger object to log to. Default is a logger named ‘katcp’.

auto_reconnect : bool, optional

Whether to automatically reconnect if the connection dies.

timeout : float in seconds, optional

Default number of seconds to wait before a callback callback_request times out. Can
be overridden in individual calls to callback_request.

Examples

>>> def reply_cb(msg):
... print "Reply:", msg
...
>>> def inform_cb(msg):
... print "Inform:", msg
...
>>> c = AsyncClient('localhost', 10000)
>>> c.start()

(continues on next page)

104 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

(continued from previous page)

>>> c.ioloop.add_callback(
... c.callback_request,
... katcp.Message.request('myreq'),
... reply_cb=reply_cb,
... inform_cb=inform_cb,
... )
...
>>> # expect reply to be printed here
>>> # stop the client once we're finished with it
>>> c.stop()
>>> c.join()

Methods

AsyncClient.blocking_request(msg[,
timeout, . . . ])

Send a request message and wait for its reply.

AsyncClient.callback_request(msg[,
. . . ])

Send a request message.

AsyncClient.convert_seconds(time_seconds)Convert a time in seconds to the device timestamp
units.

AsyncClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

AsyncClient.enable_thread_safety() Enable thread-safety features.
AsyncClient.future_request(msg[, time-
out, . . . ])

Send a request message, with future replies.

AsyncClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

AsyncClient.handle_message(msg) Handle a message from the server.
AsyncClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
AsyncClient.handle_request(msg) Dispatch a request message to the appropriate

method.
AsyncClient.inform_build_state(msg) Handle katcp v4 and below build-state inform.
AsyncClient.inform_version(msg) Handle katcp v4 and below version inform.
AsyncClient.inform_version_connect(msg)Process a #version-connect message.
AsyncClient.is_connected() Check if the socket is currently connected.
AsyncClient.join([timeout]) Rejoin the client thread.
AsyncClient.next()
AsyncClient.notify_connected(connected) Event handler that is called whenever the connection

status changes.
AsyncClient.preset_protocol_flags(protocol_flags)Preset server protocol flags.
AsyncClient.request(msg[, use_mid]) Send a request message, with automatic message ID

assignment.
AsyncClient.running() Whether the client is running.
AsyncClient.send_message(msg) Send any kind of message.
AsyncClient.send_request(msg) Send a request message.
AsyncClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
AsyncClient.start([timeout]) Start the client in a new thread.
AsyncClient.stop(*args, **kwargs) Stop a running client.

Continued on next page

1.4. Low level client API (client) 105



KATCP Documentation, Release 0.0+unknown.202102020856

Table 30 – continued from previous page
AsyncClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
AsyncClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
AsyncClient.unhandled_request(msg) Fallback method for requests without a registered

handler.
AsyncClient.until_connected(**kwargs) Return future that resolves when the client is con-

nected.
AsyncClient.until_protocol(**kwargs) Return future that resolves after receipt of katcp pro-

tocol info.
AsyncClient.until_running([timeout]) Return future that resolves when the client is run-

ning.
AsyncClient.until_stopped([timeout]) Return future that resolves when the client has

stopped.
AsyncClient.wait_connected([timeout]) Wait until the client is connected.
AsyncClient.wait_disconnected([timeout]) Wait until the client is disconnected.
AsyncClient.wait_protocol([timeout]) Wait until katcp protocol information has been re-

ceived from server.
AsyncClient.wait_running([timeout]) Wait until the client is running.

blocking_request(msg, timeout=None, use_mid=None)
Send a request message and wait for its reply.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

callback_request(msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,
use_mid=None)

Send a request message.

Parameters msg : Message object

The request message to send.

reply_cb : function

The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)

inform_cb : function

The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)

user_data : tuple

106 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Optional user data to send to the reply and inform callbacks.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

future_request(msg, timeout=None, use_mid=None)
Send a request message, with future replies.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns A tornado.concurrent.Future that resolves with: :

reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

handle_inform(msg)
Handle inform messages related to any current requests.

Inform messages not related to the current request go up to the base class method.

Parameters msg : Message object

The inform message to dispatch.

handle_reply(msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.

Parameters msg : Message object

The reply message to dispatch.

stop(*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

1.4. Low level client API (client) 107



KATCP Documentation, Release 0.0+unknown.202102020856

class katcp.client.BlockingClient(host, port, tb_limit=20, timeout=5.0, log-
ger=<logging.Logger object>, auto_reconnect=True)

Bases: katcp.client.CallbackClient

Methods

BlockingClient.
blocking_request(msg[, . . . ])

Send a request message and wait for its reply.

BlockingClient.
callback_request(msg[, . . . ])

Send a request message.

BlockingClient.
convert_seconds(time_seconds)

Convert a time in seconds to the device timestamp
units.

BlockingClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

BlockingClient.
enable_thread_safety()

Enable thread-safety features.

BlockingClient.future_request(msg[,
. . . ])

Send a request message, with future replies.

BlockingClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

BlockingClient.handle_message(msg) Handle a message from the server.
BlockingClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
BlockingClient.handle_request(msg) Dispatch a request message to the appropriate

method.
BlockingClient.
inform_build_state(msg)

Handle katcp v4 and below build-state inform.

BlockingClient.inform_version(msg) Handle katcp v4 and below version inform.
BlockingClient.
inform_version_connect(msg)

Process a #version-connect message.

BlockingClient.is_connected() Check if the socket is currently connected.
BlockingClient.join([timeout]) Rejoin the client thread.
BlockingClient.next()
BlockingClient.
notify_connected(connected)

Event handler that is called whenever the connection
status changes.

BlockingClient.
preset_protocol_flags(. . . )

Preset server protocol flags.

BlockingClient.request(msg[, use_mid]) Send a request message, with automatic message ID
assignment.

BlockingClient.running() Whether the client is running.
BlockingClient.send_message(msg) Send any kind of message.
BlockingClient.send_request(msg) Send a request message.
BlockingClient.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
BlockingClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
BlockingClient.start([timeout]) Start the client in a new thread.
BlockingClient.stop(*args, **kwargs) Stop a running client.
BlockingClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
BlockingClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
Continued on next page

108 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 31 – continued from previous page
BlockingClient.
unhandled_request(msg)

Fallback method for requests without a registered
handler.

BlockingClient.
until_connected(**kwargs)

Return future that resolves when the client is con-
nected.

BlockingClient.
until_protocol(**kwargs)

Return future that resolves after receipt of katcp pro-
tocol info.

BlockingClient.
until_running([timeout])

Return future that resolves when the client is run-
ning.

BlockingClient.
until_stopped([timeout])

Return future that resolves when the client has
stopped.

BlockingClient.
wait_connected([timeout])

Wait until the client is connected.

BlockingClient.
wait_disconnected([timeout])

Wait until the client is disconnected.

BlockingClient.
wait_protocol([timeout])

Wait until katcp protocol information has been re-
ceived from server.

BlockingClient.wait_running([timeout]) Wait until the client is running.

class katcp.client.CallbackClient(host, port, tb_limit=20, timeout=5.0, log-
ger=<logging.Logger object>, auto_reconnect=True)

Bases: katcp.client.AsyncClient

Methods

CallbackClient.
blocking_request(msg[, . . . ])

Send a request message and wait for its reply.

CallbackClient.
callback_request(msg[, . . . ])

Send a request message.

CallbackClient.
convert_seconds(time_seconds)

Convert a time in seconds to the device timestamp
units.

CallbackClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

CallbackClient.
enable_thread_safety()

Enable thread-safety features.

CallbackClient.future_request(msg[,
. . . ])

Send a request message, with future replies.

CallbackClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

CallbackClient.handle_message(msg) Handle a message from the server.
CallbackClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
CallbackClient.handle_request(msg) Dispatch a request message to the appropriate

method.
CallbackClient.
inform_build_state(msg)

Handle katcp v4 and below build-state inform.

CallbackClient.inform_version(msg) Handle katcp v4 and below version inform.
CallbackClient.
inform_version_connect(msg)

Process a #version-connect message.

CallbackClient.is_connected() Check if the socket is currently connected.
CallbackClient.join([timeout]) Rejoin the client thread.

Continued on next page

1.4. Low level client API (client) 109



KATCP Documentation, Release 0.0+unknown.202102020856

Table 32 – continued from previous page
CallbackClient.next()
CallbackClient.
notify_connected(connected)

Event handler that is called whenever the connection
status changes.

CallbackClient.
preset_protocol_flags(. . . )

Preset server protocol flags.

CallbackClient.request(msg[, use_mid]) Send a request message, with automatic message ID
assignment.

CallbackClient.running() Whether the client is running.
CallbackClient.send_message(msg) Send any kind of message.
CallbackClient.send_request(msg) Send a request message.
CallbackClient.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
CallbackClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
CallbackClient.start([timeout]) Start the client in a new thread.
CallbackClient.stop(*args, **kwargs) Stop a running client.
CallbackClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
CallbackClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
CallbackClient.
unhandled_request(msg)

Fallback method for requests without a registered
handler.

CallbackClient.
until_connected(**kwargs)

Return future that resolves when the client is con-
nected.

CallbackClient.
until_protocol(**kwargs)

Return future that resolves after receipt of katcp pro-
tocol info.

CallbackClient.
until_running([timeout])

Return future that resolves when the client is run-
ning.

CallbackClient.
until_stopped([timeout])

Return future that resolves when the client has
stopped.

CallbackClient.
wait_connected([timeout])

Wait until the client is connected.

CallbackClient.
wait_disconnected([timeout])

Wait until the client is disconnected.

CallbackClient.
wait_protocol([timeout])

Wait until katcp protocol information has been re-
ceived from server.

CallbackClient.wait_running([timeout]) Wait until the client is running.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

class katcp.client.DeviceClient(host, port, tb_limit=20, logger=<logging.Logger object>,
auto_reconnect=True)

Bases: future.types.newobject.newobject

Device client proxy.

Subclasses should implement .reply_*, .inform_* and send_request_* methods to take actions when messages
arrive, and implement unhandled_inform, unhandled_reply and unhandled_request to provide fallbacks for mes-
sages for which there is no handler.

Request messages can be sent by calling .send_request().

110 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters host : string

Host to connect to.

port : int

Port to connect to.

tb_limit : int

Maximum number of stack frames to send in error traceback.

logger : object

Python Logger object to log to.

auto_reconnect : bool

Whether to automatically reconnect if the connection dies.

Notes

The client may block its ioloop if the default blocking tornado DNS resolver is used. When an ioloop is shared,
it would make sense to configure one of the non-blocking resolver classes, see http://tornado.readthedocs.org/
en/latest/netutil.html

Examples

>>> MyClient(DeviceClient):
... def reply_myreq(self, msg):
... print str(msg)
...
>>> c = MyClient('localhost', 10000){
>>> c.start()
>>> c.send_request(katcp.Message.request('myreq'))
>>> # expect reply to be printed here
>>> # stop the client once we're finished with it
>>> c.stop()
>>> c.join()

Methods

DeviceClient.convert_seconds(time_seconds)Convert a time in seconds to the device timestamp
units.

DeviceClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

DeviceClient.enable_thread_safety() Enable thread-safety features.
DeviceClient.handle_inform(msg) Dispatch an inform message to the appropriate

method.
DeviceClient.handle_message(msg) Handle a message from the server.
DeviceClient.handle_reply(msg) Dispatch a reply message to the appropriate method.
DeviceClient.handle_request(msg) Dispatch a request message to the appropriate

method.
DeviceClient.inform_build_state(msg) Handle katcp v4 and below build-state inform.

Continued on next page

1.4. Low level client API (client) 111

http://tornado.readthedocs.org/en/latest/netutil.html
http://tornado.readthedocs.org/en/latest/netutil.html


KATCP Documentation, Release 0.0+unknown.202102020856

Table 33 – continued from previous page
DeviceClient.inform_version(msg) Handle katcp v4 and below version inform.
DeviceClient.inform_version_connect(msg)Process a #version-connect message.
DeviceClient.is_connected() Check if the socket is currently connected.
DeviceClient.join([timeout]) Rejoin the client thread.
DeviceClient.next()
DeviceClient.notify_connected(connected)Event handler that is called whenever the connection

status changes.
DeviceClient.preset_protocol_flags(. . . )Preset server protocol flags.
DeviceClient.request(msg[, use_mid]) Send a request message, with automatic message ID

assignment.
DeviceClient.running() Whether the client is running.
DeviceClient.send_message(msg) Send any kind of message.
DeviceClient.send_request(msg) Send a request message.
DeviceClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
DeviceClient.start([timeout]) Start the client in a new thread.
DeviceClient.stop([timeout]) Stop a running client.
DeviceClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
DeviceClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
DeviceClient.unhandled_request(msg) Fallback method for requests without a registered

handler.
DeviceClient.until_connected(**kwargs) Return future that resolves when the client is con-

nected.
DeviceClient.until_protocol(**kwargs) Return future that resolves after receipt of katcp pro-

tocol info.
DeviceClient.until_running([timeout]) Return future that resolves when the client is run-

ning.
DeviceClient.until_stopped([timeout]) Return future that resolves when the client has

stopped.
DeviceClient.wait_connected([timeout]) Wait until the client is connected.
DeviceClient.wait_disconnected([timeout])Wait until the client is disconnected.
DeviceClient.wait_protocol([timeout]) Wait until katcp protocol information has been re-

ceived from server.
DeviceClient.wait_running([timeout]) Wait until the client is running.

MAX_LOOP_LATENCY = 0.03
Do not spend more than this many seconds reading pipelined socket data

IOStream inline-reading can result in ioloop starvation (see https://groups.google.com/forum/#!topic/
python-tornado/yJrDAwDR_kA).

MAX_MSG_SIZE = 2097152
Maximum message size that can be received in bytes.

If more than MAX_MSG_SIZE bytes are read from the socket without encountering a message terminator
(i.e. newline), the connection is closed.

MAX_WRITE_BUFFER_SIZE = 4194304
Maximum outstanding bytes to be buffered by the server process.

If more than MAX_WRITE_BUFFER_SIZE bytes are outstanding, the connection is closed. Note that the
OS also buffers socket writes, so more than MAX_WRITE_BUFFER_SIZE bytes may be untransmitted
in total.

112 Chapter 1. Contents

https://groups.google.com/forum/#!topic/python-tornado/yJrDAwDR_kA
https://groups.google.com/forum/#!topic/python-tornado/yJrDAwDR_kA


KATCP Documentation, Release 0.0+unknown.202102020856

bind_address
(host, port) where the client is connecting

convert_seconds(time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety()
Enable thread-safety features.

Must be called before start().

handle_inform(msg)
Dispatch an inform message to the appropriate method.

Parameters msg : Message object

The inform message to dispatch.

handle_message(msg)
Handle a message from the server.

Parameters msg : Message object

The Message to dispatch to the handler methods.

handle_reply(msg)
Dispatch a reply message to the appropriate method.

Parameters msg : Message object

The reply message to dispatch.

handle_request(msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object

The request message to dispatch.

inform_build_state(msg)
Handle katcp v4 and below build-state inform.

inform_version(msg)
Handle katcp v4 and below version inform.

inform_version_connect(msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

join(timeout=None)
Rejoin the client thread.

1.4. Low level client API (client) 113



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify_connected(connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request(msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message

use_mid : bool or None, default=None

Returns mid : string or None

The message id, or None if no msg id is used

If use_mid is None and the server supports msg ids, or if use_mid is :

True a message ID will automatically be assigned msg.mid is None. :

if msg.mid has a value, and the server supports msg ids, that value :

will be used. If the server does not support msg ids, KatcpVersionError :

will be raised. :

running()
Whether the client is running.

Returns running : bool

Whether the client is running.

send_message(msg)
Send any kind of message.

Parameters msg : Message object

The message to send.

114 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

send_request(msg)
Send a request message.

Parameters msg : Message object

The request Message to send.

set_ioloop(ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start(timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop(timeout=None)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform(msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object

The inform message that wasn’t processed by any handlers.

unhandled_reply(msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object

The reply message that wasn’t processed by any handlers.

unhandled_request(msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

The request message that wasn’t processed by any handlers.

until_connected(**kwargs)
Return future that resolves when the client is connected.

1.4. Low level client API (client) 115



KATCP Documentation, Release 0.0+unknown.202102020856

until_protocol(**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running(timeout=None)
Return future that resolves when the client is running.

Notes

Must be called from the same ioloop as the client.

until_stopped(timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected(timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected(timeout=None)
Wait until the client is disconnected.

Parameters timeout : float in seconds

Seconds to wait for the client to disconnect.

Returns disconnected : bool

Whether the client is disconnected.

116 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol(timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns received : bool

Whether protocol information was received

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running(timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

katcp.client.make_threadsafe(meth)
Decorator for a DeviceClient method that should always run in ioloop.

Used with DeviceClient.enable_thread_safety(). If not called the method will be unprotected and it is the user’s
responsibility to ensure that these methods are only called from the ioloop, otherwise the decorated methods are
wrapped. Should only be used for functions that have no return value.

katcp.client.make_threadsafe_blocking(meth)
Decorator for a DeviceClient method that will block.

Used with DeviceClient.enable_thread_safety(). Used to provide blocking calls that can be made from other
threads. If called in ioloop context, calls the original method directly to prevent deadlocks. Will route return
value to caller. Add timeout keyword argument to limit blocking time. If meth returns a future, its result will be
returned, otherwise its result will be passed back directly.

katcp.client.request_check(client, exception, *msg_parms, **kwargs)
Make blocking request to client and raise exception if reply is not ok.

Parameters client : DeviceClient instance

exception: Exception class to raise :

*msg_parms : Message parameters sent to the Message.request() call

**kwargs : Keyword arguments

1.4. Low level client API (client) 117



KATCP Documentation, Release 0.0+unknown.202102020856

Forwards kwargs[‘timeout’] to client.blocking_request(). Forwards kwargs[‘mid’] to
Message.request().

Returns reply, informs : as returned by client.blocking_request

Raises *exception* passed as parameter is raised if reply.reply_ok() is False :

Notes

A typical use-case for this function is to use functools.partial() to bind a particular client and exception. The
resulting function can then be used instead of direct client.blocking_request() calls to automate error handling.

1.5 Concrete Intermediate-level KATCP Client API (inspecting_client)

class katcp.inspecting_client.ExponentialRandomBackoff(delay_initial=1.0,
delay_max=90.0,
exp_fac=3.0, randomic-
ity=0.95)

Bases: future.types.newobject.newobject

Methods

ExponentialRandomBackoff.failed() Call whenever an action has failed, grows delay ex-
ponentially

ExponentialRandomBackoff.next()
ExponentialRandomBackoff.success() Call whenever an action has succeeded, resets delay

to minimum

exp_fac = None
Increase timeout by this factor for each consecutive failure

failed()
Call whenever an action has failed, grows delay exponentially

After calling failed(), the delay property contains the next delay

success()
Call whenever an action has succeeded, resets delay to minimum

class katcp.inspecting_client.InspectingClientAsync(host, port, ioloop=None,
initial_inspection=None,
auto_reconnect=True, log-
ger=<logging.Logger object>)

Bases: future.types.newobject.newobject

Higher-level client that inspects a KATCP interface.

Note: This class is not thread-safe at present, it should only be called from the ioloop.

Note: always call stop() after start() and you are done with the container to make sure the container cleans up
correctly.

118 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Methods

InspectingClientAsync.close()
InspectingClientAsync.
connect(**kwargs)

Connect to KATCP interface, starting what is needed

InspectingClientAsync.
future_check_request(. . . )

Check if the request exists.

InspectingClientAsync.
future_check_sensor(. . . )

Check if the sensor exists.

InspectingClientAsync.
future_get_request(. . . )

Get the request object.

InspectingClientAsync.
future_get_sensor(**kwargs)

Get the sensor object.

InspectingClientAsync.
handle_sensor_value()

Handle #sensor-value informs just like #sensor-
status informs

InspectingClientAsync.
inform_hook_client_factory(. . . )

Return an instance of
_InformHookDeviceClient or similar

InspectingClientAsync.
inspect(**kwargs)

Inspect device requests and sensors, update model.

InspectingClientAsync.
inspect_requests(**kwargs)

Inspect all or one requests on the device.

InspectingClientAsync.
inspect_sensors(**kwargs)

Inspect all or one sensor on the device.

InspectingClientAsync.
is_connected()

Connection status.

InspectingClientAsync.join([timeout])
InspectingClientAsync.next()
InspectingClientAsync.
preset_protocol_flags(. . . )

Preset server protocol flags.

InspectingClientAsync.
request_factory

Factory that produces KATCP Request objects.

InspectingClientAsync.
sensor_factory

alias of katcp.core.Sensor

InspectingClientAsync.
set_ioloop(ioloop)
InspectingClientAsync.
set_state_callback(cb)

Set user callback for state changes

InspectingClientAsync.
simple_request(. . . )

Create and send a request to the server.

InspectingClientAsync.start([timeout]) Note: always call stop() and wait until_stopped()
when you are done with the container to make sure
the container cleans up correctly.

InspectingClientAsync.stop([timeout])
InspectingClientAsync.
until_connected([timeout])
InspectingClientAsync.
until_data_synced([. . . ])
InspectingClientAsync.
until_not_synced([timeout])
InspectingClientAsync.
until_state(desired_state)

Wait until state is desired_state, Inspecting-
ClientStateType instance

Continued on next page

1.5. Concrete Intermediate-level KATCP Client API (inspecting_client) 119



KATCP Documentation, Release 0.0+unknown.202102020856

Table 35 – continued from previous page
InspectingClientAsync.
until_stopped([timeout])

Return future that resolves when the client has
stopped

InspectingClientAsync.
until_synced([timeout])
InspectingClientAsync.
update_sensor(**kwargs)

connect(**kwargs)
Connect to KATCP interface, starting what is needed

Parameters timeout : float, None

Time to wait until connected. No waiting if None.

Raises :class:‘tornado.gen.TimeoutError‘ if the connect timeout expires :

connected
Connection status.

future_check_request(**kwargs)
Check if the request exists.

Used internally by future_get_request. This method is aware of synchronisation in progress and if inspec-
tion of the server is allowed.

Parameters name : str

Name of the request to verify.

update : bool or None, optional

If a katcp request to the server should be made to check if the sensor is on the server.
True = Allow, False do not Allow, None use the class default.

Notes

Ensure that self.state.data_synced == True if yielding to future_check_request from a state-change call-
back, or a deadlock will occur.

future_check_sensor(**kwargs)
Check if the sensor exists.

Used internally by future_get_sensor. This method is aware of synchronisation in progress and if inspec-
tion of the server is allowed.

Parameters name : str

Name of the sensor to verify.

update : bool or None, optional

If a katcp request to the server should be made to check if the sensor is on the server
now.

Notes

Ensure that self.state.data_synced == True if yielding to future_check_sensor from a state-change callback,
or a deadlock will occur.

120 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

future_get_request(**kwargs)
Get the request object.

Check if we have information for this request, if not connect to server and update (if allowed).

Parameters name : string

Name of the request.

update : bool or None, optional

True allow inspect client to inspect katcp server if the request is not known.

Returns Request created by :meth:‘request_factory‘ or None if request not found. :

Notes

Ensure that self.state.data_synced == True if yielding to future_get_request from a state-change callback,
or a deadlock will occur.

future_get_sensor(**kwargs)
Get the sensor object.

Check if we have information for this sensor, if not connect to server and update (if allowed) to get infor-
mation.

Parameters name : string

Name of the sensor.

update : bool or None, optional

True allow inspect client to inspect katcp server if the sensor is not known.

Returns Sensor created by :meth:‘sensor_factory‘ or None if sensor not found. :

Notes

Ensure that self.state.data_synced == True if yielding to future_get_sensor from a state-change callback,
or a deadlock will occur.

handle_sensor_value()
Handle #sensor-value informs just like #sensor-status informs

inform_hook_client_factory(host, port, *args, **kwargs)
Return an instance of _InformHookDeviceClient or similar

Provided to ease testing. Dynamically overriding this method after instantiation but before start() is called
allows for deep brain surgery. See katcp.fake_clients.TBD

inspect(**kwargs)
Inspect device requests and sensors, update model.

Returns Tornado future that resolves with: :

model_changes : Nested AttrDict or None

Contains sets of added/removed request/sensor names

Example structure:

1.5. Concrete Intermediate-level KATCP Client API (inspecting_client) 121



KATCP Documentation, Release 0.0+unknown.202102020856

{
'requests':{

'added': set(['req1', 'req2']),
'removed': set(['req10', 'req20'])

}
'sensors': {

'added': set(['sens1', 'sens2']),
'removed': set(['sens10', 'sens20'])

}
}

If there are no changes keys may be omitted. If an item is in both the ‘added’ and
‘removed’ sets that means that it changed.

If neither request not sensor changes are present, None is returned instead of a nested
structure.

inspect_requests(**kwargs)
Inspect all or one requests on the device. Update requests index.

Parameters name : str or None, optional

Name of the request or None to get all requests.

timeout : float or None, optional

Timeout for request inspection, None for no timeout

Returns Tornado future that resolves with: :

changes : AttrDict

AttrDict with keys added and removed (of type set), listing the requests that have
been added or removed respectively. Modified requests are listed in both. If there are
no changes, returns None instead.

Example structure:

{
'added': set(['req1', 'req2']),
'removed': set(['req10', 'req20'])

}

inspect_sensors(**kwargs)
Inspect all or one sensor on the device. Update sensors index.

Parameters name : str or None, optional

Name of the sensor or None to get all sensors.

timeout : float or None, optional

Timeout for sensors inspection, None for no timeout

Returns Tornado future that resolves with: :

changes : AttrDict

AttrDict with keys added and removed (of type set), listing the sensors that have
been added or removed respectively. Modified sensors are listed in both. If there are no
changes, returns None instead.

Example structure:

122 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

{
'added': set(['sens1', 'sens2']),
'removed': set(['sens10', 'sens20'])

}

is_connected()
Connection status.

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request_factory
Factory that produces KATCP Request objects.

signature: request_factory(name, description, timeout_hint), all parameters passed as kwargs

Should be set before calling connect()/start().

Methods

Request.count
Request.index

alias of Request

requests
A list of possible requests.

resync_delay = None
Set to an ExponentialRandomBackoff instance in _state_loop

sensor_factory
alias of katcp.core.Sensor

sensors
A list of known sensors.

set_state_callback(cb)
Set user callback for state changes

Called as cb(state, model_changes)

where state is an InspectingClientStateType instance, and model_changes is an AttrDict.
The latter may contain keys requests and sensors to describe changes to requests or sensors re-
spectively. These in turn have attributes added and removed which are sets of request/sensor names.
Requests/sensors that have been modified will appear in both sets.

Warning: It is possible for model_changes to be None, or for either requests or sensors to be
absent from model_changes.

simple_request(request, *args, **kwargs)
Create and send a request to the server.

1.5. Concrete Intermediate-level KATCP Client API (inspecting_client) 123



KATCP Documentation, Release 0.0+unknown.202102020856

This method implements a very small subset of the options possible to send an request. It is provided as a
shortcut to sending a simple request.

Parameters request : str

The request to call.

*args : list of objects

Arguments to pass on to the request.

Keyword Arguments timeout : float or None, optional

Timeout after this amount of seconds (keyword argument).

mid : None or int, optional

Message identifier to use for the request message. If None, use either auto-incrementing
value or no mid depending on the KATCP protocol version (mid’s were only introduced
with KATCP v5) and the value of the use_mid argument. Defaults to None

use_mid : bool

Use a mid for the request if True. Defaults to True if the server supports them.

Returns future object. :

Examples

reply, informs = yield ic.simple_request('help', 'sensor-list')

start(timeout=None)
Note: always call stop() and wait until_stopped() when you are done with the container to make sure the
container cleans up correctly.

state
Current client state.

synced
Boolean indicating if the device has been synchronised.

until_state(desired_state, timeout=None)
Wait until state is desired_state, InspectingClientStateType instance

Returns a future

until_stopped(timeout=None)
Return future that resolves when the client has stopped

See the DeviceClient.until_stopped docstring for parameter definitions and more info.

class katcp.inspecting_client.InspectingClientStateType
Bases: katcp.inspecting_client.InspectingClientStateType

States tuple for the inspecting client. Fields, all bool:

connected: bool TCP connection has been established with the server.

synced: bool The inspecting client and the user that interfaces through the state change callback are all syn-
chronised with the current device state. Also implies connected = True and data_synced = True.

model_changed: bool The device has changed in some way, resulting in the device model being out of date.

data_synced: bool The inspecting client’s internal representation of the device is up to date, although state
change user is not yet up to date.

124 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Methods

InspectingClientStateType.
count(value)
InspectingClientStateType.
index(value, . . . )

Raises ValueError if the value is not present.

katcp.inspecting_client.RequestType
alias of katcp.inspecting_client.Request

exception katcp.inspecting_client.SyncError
Bases: exceptions.Exception

Raised if an error occurs during syncing with a device

1.6 Abstract High-level KATCP Client API (resource)

A high-level abstract interface to KATCP clients, sensors and requests.

class katcp.resource.KATCPDummyRequest(request_description, is_active=<function
<lambda>>)

Bases: katcp.resource.KATCPRequest

Dummy counterpart to KATCPRequest that always returns a successful reply

Methods

KATCPDummyRequest.is_active() True if resource for this request is active
KATCPDummyRequest.
issue_request(*args, **kwargs)

Signature as for __call__

KATCPDummyRequest.next()

issue_request(*args, **kwargs)
Signature as for __call__

Do the request immediately without checking active state.

class katcp.resource.KATCPReply
Bases: katcp.resource._KATCPReplyTuple

Container for return messages of KATCP request (reply and informs).

This is based on a named tuple with ‘reply’ and ‘informs’ fields so that the KATCPReply object can still be
unpacked into a normal tuple.

Parameters reply : katcp.Message object

Reply message returned by katcp request

informs : list of katcp.Message objects

List of inform messages returned by KATCP request

1.6. Abstract High-level KATCP Client API (resource) 125



KATCP Documentation, Release 0.0+unknown.202102020856

Attributes

messages: list of katcp.Message objects List of all messages returned by KATCP re-
quest, reply first

reply: katcp.Message object Reply message returned by KATCP request
informs: list of katcp.Message objects List of inform messages returned by KATCP re-

quest
The instance evaluates to nonzero (i.e. truthy) if the re-
quest succeeded.

Methods

KATCPReply.count(value)
KATCPReply.index(value, [start, [stop]]) Raises ValueError if the value is not present.

messages
List of all messages returned by KATCP request, reply first.

succeeded
True if request succeeded (i.e. first reply argument is ‘ok’).

class katcp.resource.KATCPRequest(request_description, is_active=<function <lambda>>)
Bases: future.types.newobject.newobject

Abstract Base class to serve as the definition of the KATCPRequest API.

Wrapper around a specific KATCP request to a given KATCP device. Each available KATCP request for a
particular device has an associated KATCPRequest object in the object hierarchy. This wrapper is mainly for
interactive convenience. It provides the KATCP request help string as a docstring and pretty-prints the result of
the request.

Methods

KATCPRequest.is_active() True if resource for this request is active
KATCPRequest.issue_request(*args,
**kwargs)

Signature as for __call__

KATCPRequest.next()

description
Description of KATCP request as obtained from the ?help request.

is_active()
True if resource for this request is active

issue_request(*args, **kwargs)
Signature as for __call__

Do the request immediately without checking active state.

name
Name of the KATCP request.

timeout_hint
Request timeout suggested by device or None if not provided

126 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

class katcp.resource.KATCPResource
Bases: future.types.newobject.newobject

Base class to serve as the definition of the KATCPResource API.

A class C implementing the KATCPResource API should register itself using KATCPResource.register(C) or
subclass KATCPResource directly. A complication involved with subclassing is that all the abstract properties
must be implemented as properties; normal instance attributes cannot be used.

Attributes

Apart from the abstract properties described below
TODO Describe how hierarchies are implemented. Also all other descriptions
here so that the sphinx doc can be auto-generated from here.

Methods

KATCPResource.is_active()
KATCPResource.list_sensors([filter, . . . ]) List sensors available on this resource matching cer-

tain criteria.
KATCPResource.next()
KATCPResource.set_active(active)
KATCPResource.
set_sampling_strategies(**kwargs)

Set a sampling strategy for all sensors that match the
specified filter.

KATCPResource.
set_sampling_strategy(**kwargs)

Set a sampling strategy for a specific sensor.

KATCPResource.wait(**kwargs) Wait for a sensor in this resource to satisfy a condi-
tion.

address
Address of the underlying client/device.

Type: tuple(host, port) or None, with host a string and port an integer.

If this KATCPResource is not associated with a specific KATCP device (e.g. it is only a top-level container
for a hierarchy of KATCP resources), the address should be None.

children
AttrDict of subordinate KATCPResource objects keyed by their names.

description
Description of this KATCP resource.

is_connected
Indicate whether the underlying client/device is connected or not.

list_sensors(filter=”, strategy=False, status=”, use_python_identifiers=True, tuple=False, re-
fresh=False)

List sensors available on this resource matching certain criteria.

Parameters filter : string, optional

Filter each returned sensor’s name against this regexp if specified. To ease the
dichotomy between Python identifier names and actual sensor names, the default
is to search on Python identifier names rather than KATCP sensor names, unless

1.6. Abstract High-level KATCP Client API (resource) 127



KATCP Documentation, Release 0.0+unknown.202102020856

use_python_identifiers below is set to False. Note that the sensors of subordinate
KATCPResource instances may have inconsistent names and Python identifiers, better
to always search on Python identifiers in this case.

strategy : {False, True}, optional

Only list sensors with a set strategy if True

status : string, optional

Filter each returned sensor’s status against this regexp if given

use_python_identifiers : {True, False}, optional

Match on python identifiers even the the KATCP name is available.

tuple : {True, False}, optional, Default: False

Return backwards compatible tuple instead of SensorResultTuples

refresh : {True, False}, optional, Default: False

If set the sensor values will be refreshed with get_value before returning the results.

Returns sensors : list of SensorResultTuples, or list of tuples

List of matching sensors presented as named tuples. The object field is the
KATCPSensor object associated with the sensor. Note that the name of the object
may not match name if it originates from a subordinate device.

name
Name of this KATCP resource.

parent
Parent KATCPResource object of this subordinate resource, or None.

req
Attribute root/container for all KATCP request wrappers.

Each KATCP request that is exposed on a KATCP device should have a corresponding KATCPRequest
object so that calling

resource.req.request_name(arg1, arg2, . . . )

sends a ‘?request-name arg1 arg2 . . . ’ message to the KATCP device and waits for the associated inform-
reply and reply messages.

For a KATCPResource object that exposes a hierarchical device it can choose to include lower-level
request handlers here such that resource.req.dev_request() maps to resource.dev.req.request().

sensor
Attribute root/container for all KATCP sensor wrappers.

Each KATCP sensor that is exposed on a KATCP device should have a corresponding KATCPSensor
object so that

resource.sensor.sensor_name

corresponds to a sensor named e.g. ‘sensor-name’, where the object or attribute name is an es-
caped/Pythonised version of the original sensor name (see escape_name() for the escape mechanism).
Hopefully the device is not crazy enough to have multiple sensors that map to the same Python identifier.

A KATCPResource object that exposes a hierarchical device can choose to include lower-level sensors
here such that resource.sensor.dev_sensorname maps to resource.dev.sensor.sensorname.

128 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

set_sampling_strategies(**kwargs)
Set a sampling strategy for all sensors that match the specified filter.

Parameters filter : string

The regular expression filter to use to select the sensors to which to apply the specified
strategy. Use “” to match all sensors. Is matched using list_sensors().

strategy_and_params : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . . ]) where the strategy names and
parameters are as defined by the KATCP spec. As str contains the same elements in
space-separated form.

**list_sensor_args : keyword arguments

Passed to the list_sensors() call as kwargs

Returns sensors_strategies : tornado Future

resolves with a dict with the Python identifier names of the sensors as keys and the value
a tuple:

(success, info) with

success [bool] True if setting succeeded for this sensor, else False

info [tuple] normalised sensor strategy and parameters as tuple if success == True else,
sys.exc_info() tuple for the error that occurred.

set_sampling_strategy(**kwargs)
Set a sampling strategy for a specific sensor.

Parameters sensor_name : string

The specific sensor.

strategy_and_params : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . . ]) where the strategy names and
parameters are as defined by the KATCP spec. As str contains the same elements in
space-separated form.

Returns sensors_strategies : tornado Future

resolves with a dict with the Python identifier names of the sensors as keys and the value
a tuple:

(success, info) with

success [bool] True if setting succeeded for this sensor, else False

info [tuple] normalised sensor strategy and parameters as tuple if success == True else,
sys.exc_info() tuple for the error that occurred.

wait(**kwargs)
Wait for a sensor in this resource to satisfy a condition.

Parameters sensor_name : string

The name of the sensor to check

condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading) is
called, and must return True if its condition is satisfied. Since the reading is passed

1.6. Abstract High-level KATCP Client API (resource) 129



KATCP Documentation, Release 0.0+unknown.202102020856

in, the value, status, timestamp or received_timestamp attributes can all be used in the
check.

timeout : float or None

The timeout in seconds (None means wait forever)

Returns This command returns a tornado Future that resolves with True when the :

sensor value satisfies the condition, or False if the condition is :

still not satisfied after a given timeout period. :

Raises :class:‘KATCPSensorError‘ :

If the sensor does not have a strategy set, or if the named sensor is not present

exception katcp.resource.KATCPResourceError
Bases: exceptions.Exception

Error raised for resource-related errors

exception katcp.resource.KATCPResourceInactive
Bases: katcp.resource.KATCPResourceError

Raised when a request is made to an inactive resource

class katcp.resource.KATCPSensor(sensor_description, sensor_manager)
Bases: future.types.newobject.newobject

Wrapper around a specific KATCP sensor on a given KATCP device.

Each available KATCP sensor for a particular device has an associated KATCPSensor object in the object
hierarchy. This wrapper is mainly for interactive convenience. It provides the KATCP request help string as a
docstring and registers listeners. Subclasses need to call the base class version of __init__().

Methods

KATCPSensor.call_listeners(reading)
KATCPSensor.clear_listeners() Clear any registered listeners to updates from this

sensor.
KATCPSensor.drop_sampling_strategy() Drop memorised sampling strategy for sensor, if any
KATCPSensor.get_reading(**kwargs) Get a fresh sensor reading from the KATCP resource
KATCPSensor.get_status(**kwargs) Get a fresh sensor status from the KATCP resource
KATCPSensor.get_value(**kwargs) Get a fresh sensor value from the KATCP resource
KATCPSensor.is_listener(listener)
KATCPSensor.next()
KATCPSensor.parse_value(s_value) Parse a value from a string.
KATCPSensor.register_listener(listener[,
. . . ])

Add a callback function that is called when sensor
value is updated.

KATCPSensor.set(timestamp, status, value) Set sensor with a given received value, matches
katcp.Sensor.set()

KATCPSensor.set_formatted(raw_timestamp,
. . . )

Set sensor using KATCP string formatted inputs

KATCPSensor.set_sampling_strategy(strategy)Set current sampling strategy for sensor
KATCPSensor.set_strategy(strategy[,
params])

Set current sampling strategy for sensor.

Continued on next page

130 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 42 – continued from previous page
KATCPSensor.set_value(value[, status,
timestamp])

Set sensor value with optinal specification of status
and timestamp

KATCPSensor.unregister_listener(listener)Remove a listener callback added with regis-
ter_listener().

KATCPSensor.wait(condition_or_value[, time-
out])

Wait for the sensor to satisfy a condition.

clear_listeners()
Clear any registered listeners to updates from this sensor.

drop_sampling_strategy()
Drop memorised sampling strategy for sensor, if any

Calling this method ensures that the sensor manager does not attempt to reapply a sampling strategy. It
will not raise an error if no strategy has been set. Use set_sampling_strategy() to memorise a
strategy again.

get_reading(**kwargs)
Get a fresh sensor reading from the KATCP resource

Returns reply : tornado Future resolving with KATCPSensorReading object

Notes

As a side-effect this will update the reading stored in this object, and result in registered listeners being
called.

get_status(**kwargs)
Get a fresh sensor status from the KATCP resource

Returns reply : tornado Future resolving with KATCPSensorReading object

Notes

As a side-effect this will update the reading stored in this object, and result in registered listeners being
called.

get_value(**kwargs)
Get a fresh sensor value from the KATCP resource

Returns reply : tornado Future resolving with KATCPSensorReading object

Notes

As a side-effect this will update the reading stored in this object, and result in registered listeners being
called.

name
Name of this KATCPSensor

normalised_name
Normalised name of this KATCPSensor that can be used as a python identifier

parent_name
Name of the parent of this KATCPSensor

1.6. Abstract High-level KATCP Client API (resource) 131



KATCP Documentation, Release 0.0+unknown.202102020856

parse_value(s_value)
Parse a value from a string.

Parameters s_value : str

A string value to attempt to convert to a value for the sensor.

Returns value : object

A value of a type appropriate to the sensor.

reading
Most recently received sensor reading as KATCPSensorReading instance

register_listener(listener, reading=False)
Add a callback function that is called when sensor value is updated.

The callback footprint is received_timestamp, timestamp, status, value.

Parameters listener : function

Callback signature: if reading listener(katcp_sensor, reading) where katcp_sensor is
this KATCPSensor instance reading is an instance of KATCPSensorReading.

Callback signature: default, if not reading listener(received_timestamp, timestamp, sta-
tus, value)

sampling_strategy
Current sampling strategy

set(timestamp, status, value)
Set sensor with a given received value, matches katcp.Sensor.set()

set_formatted(raw_timestamp, raw_status, raw_value, major)
Set sensor using KATCP string formatted inputs

Mirrors katcp.Sensor.set_formatted().

This implementation is empty. Will, during instantiation, be overridden by the set_formatted() method of
a katcp.Sensor object.

set_sampling_strategy(strategy)
Set current sampling strategy for sensor

Parameters strategy : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . . ]) where the strategy names and
parameters are as defined by the KATCP spec. As str contains the same elements in
space-separated form.

Returns done : tornado Future that resolves when done or raises KATCPSensorError

set_strategy(strategy, params=None)
Set current sampling strategy for sensor. Add this footprint for backwards compatibility.

Parameters strategy : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . . ]) where the strategy names and
parameters are as defined by the KATCP spec. As str contains the same elements in
space-separated form.

params : seq of str or str

(<strat_name>, [<strat_parm1>, . . . ])

Returns done : tornado Future that resolves when done or raises KATCPSensorError

132 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

set_value(value, status=1, timestamp=None)
Set sensor value with optinal specification of status and timestamp

unregister_listener(listener)
Remove a listener callback added with register_listener().

Parameters listener : function

Reference to the callback function that should be removed

wait(condition_or_value, timeout=None)
Wait for the sensor to satisfy a condition.

Parameters condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading) is
called, and must return True if its condition is satisfied. Since the reading is passed
in, the value, status, timestamp or received_timestamp attributes can all be used in the
check. TODO: Sequences of conditions (use SensorTransitionWaiter thingum?)

timeout : float or None

The timeout in seconds (None means wait forever)

Returns This command returns a tornado Future that resolves with True when the :

sensor value satisfies the condition. It will never resolve with False; :

if a timeout is given a TimeoutError happens instead. :

Raises :class:‘KATCPSensorError‘ :

If the sensor does not have a strategy set

:class:‘tornado.gen.TimeoutError‘ :

If the sensor condition still fails after a stated timeout period

exception katcp.resource.KATCPSensorError
Bases: katcp.resource.KATCPResourceError

Raised if a problem occurred dealing with as KATCPSensor operation

class katcp.resource.KATCPSensorReading
Bases: katcp.resource.KATCPSensorReading

Sensor reading as a (received_timestamp, timestamp, istatus, value) tuple.

Attributes

KATCPSensorReading.
received_timestamp

Alias for field number 0

KATCPSensorReading.timestamp Alias for field number 1
KATCPSensorReading.istatus Alias for field number 2
KATCPSensorReading.value Alias for field number 3

Methods

KATCPSensorReading.count(value)
Continued on next page

1.6. Abstract High-level KATCP Client API (resource) 133



KATCP Documentation, Release 0.0+unknown.202102020856

Table 44 – continued from previous page
KATCPSensorReading.index(value, [start,
[stop]])

Raises ValueError if the value is not present.

status
Returns the string representation of sensor status, eg ‘nominal’

class katcp.resource.KATCPSensorsManager
Bases: future.types.newobject.newobject

Sensor management class used by KATCPSensor. Abstracts communications details.

This class should arrange:

1. A mechanism for setting sensor strategies

2. A mechanism for polling a sensor value

3. Keeping track of- and reapplying sensor strategies after reconnect, etc.

4. Providing local time. This is doing to avoid direct calls to time.time, allowing accelerated time testing /
simulation / dry-running

Methods

KATCPSensorsManager.
drop_sampling_strategy(. . . )

Drop the sampling strategy for the named sensor
from the cache

KATCPSensorsManager.
get_sampling_strategy(. . . )

Get the current sampling strategy for the named sen-
sor

KATCPSensorsManager.next()
KATCPSensorsManager.
poll_sensor(sensor_name)

Poll sensor and arrange for sensor object to be up-
dated

KATCPSensorsManager.
reapply_sampling_strategies()

Reapply all sensor strategies using cached values

KATCPSensorsManager.
set_sampling_strategy(. . . )

Set the sampling strategy for the named sensor

KATCPSensorsManager.time() Returns the current time (in seconds since UTC
epoch)

drop_sampling_strategy(sensor_name)
Drop the sampling strategy for the named sensor from the cache

Calling set_sampling_strategy() requires the sensor manager to memorise the requested strategy
so that it can automatically be reapplied. If the client is no longer interested in the sensor, or knows the
sensor may be removed from the server, then it can use this method to ensure the manager forgets about
the strategy. This method will not change the current strategy. No error is raised if there is no strategy to
drop.

Parameters sensor_name : str

Name of the sensor (normal or escaped form)

get_sampling_strategy(sensor_name)
Get the current sampling strategy for the named sensor

Parameters sensor_name : str

Name of the sensor (normal or escaped form)

134 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Returns strategy : tornado Future that resolves with tuple of str

contains (<strat_name>, [<strat_parm1>, . . . ]) where the strategy names and parameters
are as defined by the KATCP spec

poll_sensor(sensor_name)
Poll sensor and arrange for sensor object to be updated

Returns done_future : tornado Future

Resolves when the poll is complete, or raises KATCPSensorError

reapply_sampling_strategies()
Reapply all sensor strategies using cached values

Would typically be called when a connection is re-established. Should not raise errors when resetting
strategies for sensors that no longer exist on the KATCP resource.

set_sampling_strategy(sensor_name, strategy_and_parms)
Set the sampling strategy for the named sensor

Parameters sensor_name : str

Name of the sensor

strategy : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . . ]) where the strategy names and
parameters are as defined by the KATCP spec. As str contains the same elements in
space-separated form.

Returns done : tornado Future that resolves when done or raises KATCPSensorError

Notes

It is recommended that implementations use normalize_strategy_parameters() to process the
strategy_and_parms parameter, since it will deal with both string and list versions and makes sure that
numbers are represented as strings in a consistent format.

This method should arrange for the strategy to be set on the underlying network device or whatever other
implementation is used. This strategy should also be automatically re-set if the device is reconnected, etc.
If a strategy is set for a non-existing sensor, it should still cache the strategy and ensure that is applied
whenever said sensor comes into existence. This allows an applications to pre-set strategies for sensors
before synced / connected to a device.

time()
Returns the current time (in seconds since UTC epoch)

class katcp.resource.SensorResultTuple
Bases: katcp.resource.SensorResultTuple

Per-sensor result of list_sensors() method

Attributes

SensorResultTuple.object Alias for field number 0
SensorResultTuple.name Alias for field number 1
SensorResultTuple.
python_identifier

Alias for field number 2

Continued on next page

1.6. Abstract High-level KATCP Client API (resource) 135



KATCP Documentation, Release 0.0+unknown.202102020856

Table 46 – continued from previous page
SensorResultTuple.description Alias for field number 3
SensorResultTuple.type Alias for field number 4
SensorResultTuple.units Alias for field number 5
SensorResultTuple.reading Alias for field number 6

Methods

SensorResultTuple.count(value)
SensorResultTuple.index(value, [start,
[stop]])

Raises ValueError if the value is not present.

katcp.resource.escape_name(name)
Escape sensor and request names to be valid Python identifiers.

katcp.resource.normalize_strategy_parameters(params)
Normalize strategy parameters to be a list of strings.

Parameters params : (space-delimited) string or sequence of strings/numbers Parameters

expected by SampleStrategy object, in various forms, where the first parameter is
the name of the strategy.

Returns params : tuple of strings

Strategy parameters as a list of strings

1.7 Concrete High-level KATCP Client API (resource_client)

class katcp.resource_client.AttrMappingProxy(mapping, wrapper)
Bases: katcp.resource_client.MappingProxy

Methods

AttrMappingProxy.get(k[,d])
AttrMappingProxy.items()
AttrMappingProxy.iteritems()
AttrMappingProxy.iterkeys()
AttrMappingProxy.itervalues()
AttrMappingProxy.keys()
AttrMappingProxy.values()

class katcp.resource_client.ClientGroup(name, clients)
Bases: future.types.newobject.newobject

Create a group of similar clients.

Parameters name : str

Name of the group of clients.

clients : list of KATCPResource objects

Clients to put into the group.

136 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Methods

ClientGroup.client_updated(client) Called to notify this group that a client has been up-
dated.

ClientGroup.is_connected() Indication of the connection state of all clients in the
group

ClientGroup.next()
ClientGroup.set_sampling_strategies(**kwargs)Set sampling strategy for the sensors of all the

group’s clients.
ClientGroup.set_sampling_strategy(**kwargs)Set sampling strategy for the sensors of all the

group’s clients.
ClientGroup.wait(**kwargs) Wait for sensor present on all group clients to satisfy

a condition.

client_updated(client)
Called to notify this group that a client has been updated.

is_connected()
Indication of the connection state of all clients in the group

set_sampling_strategies(**kwargs)
Set sampling strategy for the sensors of all the group’s clients.

Only sensors that match the specified filter are considered. See the KATCPRe-
source.set_sampling_strategies docstring for parameter definitions and more info.

Returns sensors_strategies : tornado Future

Resolves with a dict with client names as keys and with the value as another
dict. The value dict is similar to the return value described in the KATCPRe-
source.set_sampling_strategies docstring.

set_sampling_strategy(**kwargs)
Set sampling strategy for the sensors of all the group’s clients.

Only sensors that match the specified filter are considered. See the KATCPRe-
source.set_sampling_strategies docstring for parameter definitions and more info.

Returns sensors_strategies : tornado Future

Resolves with a dict with client names as keys and with the value as another
dict. The value dict is similar to the return value described in the KATCPRe-
source.set_sampling_strategies docstring.

wait(**kwargs)
Wait for sensor present on all group clients to satisfy a condition.

Parameters sensor_name : string

The name of the sensor to check

condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading) is
called, and must return True if its condition is satisfied. Since the reading is passed
in, the value, status, timestamp or received_timestamp attributes can all be used in the
check.

timeout : float or None

The total timeout in seconds (None means wait forever)

1.7. Concrete High-level KATCP Client API (resource_client) 137



KATCP Documentation, Release 0.0+unknown.202102020856

quorum : None or int or float

The number of clients that are required to satisfy the condition, as either an explicit
integer or a float between 0 and 1 indicating a fraction of the total number of clients,
rounded up. If None, this means that all clients are required (the default). Be warned
that a value of 1.0 (float) indicates all clients while a value of 1 (int) indicates a single
client. . .

max_grace_period : float or None

After a quorum or initial timeout is reached, wait up to this long in an attempt to get the
rest of the clients to satisfy condition as well (achieving effectively a full quorum if all
clients behave)

Returns This command returns a tornado Future that resolves with True when a :

quorum of clients satisfy the sensor condition, or False if a quorum :

is not reached after a given timeout period (including a grace period). :

Raises :class:‘KATCPSensorError‘ :

If any of the sensors do not have a strategy set, or if the named sensor is not present

class katcp.resource_client.GroupRequest(group, name, description)
Bases: future.types.newobject.newobject

Couroutine wrapper around a specific KATCP request for a group of clients.

Each available KATCP request supported by group has an associated GroupRequest object in the hierarchy.
This wrapper is mainly for interactive convenience. It provides the KATCP request help string as a docstring
accessible via IPython’s question mark operator.

Parameters Call parameters are all forwarded to the :class:‘KATCPRequest‘ instance of each
:

client in the group. :

Returns Returns a tornado future that resolves with a :class:‘GroupResults‘ instance that :

contains the replies of each client. If a particular client does not have the request, :

its result is None. :

Methods

GroupRequest.next()

class katcp.resource_client.GroupResults
Bases: dict

The result of a group request.

This has a dictionary interface, with the client names as keys and the corresponding replies from each client as
values. The replies are stored as KATCPReply objects, or are None for clients that did not support the request.

The result will evaluate to a truthy value if all the requests succeeded, i.e.

if result:
handle_success()

else:
handle_failure()

138 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

should work as expected.

Methods

GroupResults.clear()
GroupResults.copy()
GroupResults.fromkeys(S[,v]) v defaults to None.
GroupResults.get(k[,d])
GroupResults.has_key(k)
GroupResults.items()
GroupResults.iteritems()
GroupResults.iterkeys()
GroupResults.itervalues()
GroupResults.keys()
GroupResults.pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
GroupResults.popitem() 2-tuple; but raise KeyError if D is empty.
GroupResults.setdefault(k[,d])
GroupResults.update([E, ]**F) If E present and has a .keys() method, does: for k in

E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is
followed by: for k in F: D[k] = F[k]

GroupResults.values()
GroupResults.viewitems()
GroupResults.viewkeys()
GroupResults.viewvalues()

succeeded
True if katcp request succeeded on all clients.

class katcp.resource_client.KATCPClientResource(resource_spec, parent=None, log-
ger=<logging.Logger object>)

Bases: katcp.resource.KATCPResource

Class managing a client connection to a single KATCP resource

Inspects the KATCP interface of the resources, exposing sensors and requests as per the katcp.resource.
KATCPResource API. Can also operate without exposing

Methods

KATCPClientResource.
drop_sampling_strategy(. . . )

Drop the sampling strategy for the named sensor
from the cache

KATCPClientResource.
inspecting_client_factory(. . . )

Return an instance of
ReplyWrappedInspectingClientAsync or
similar

KATCPClientResource.is_active()
KATCPClientResource.is_connected() Indication of the connection state
KATCPClientResource.
list_sensors([filter, . . . ])

List sensors available on this resource matching cer-
tain criteria.

KATCPClientResource.next()
Continued on next page

1.7. Concrete High-level KATCP Client API (resource_client) 139



KATCP Documentation, Release 0.0+unknown.202102020856

Table 52 – continued from previous page
KATCPClientResource.
set_active(active)
KATCPClientResource.
set_ioloop([ioloop])

Set the tornado ioloop to use

KATCPClientResource.
set_sampling_strategies(. . . )

Set a strategy for all sensors matching the filter, in-
cluding unseen sensors The strategy should persist
across sensor disconnect/reconnect.

KATCPClientResource.
set_sampling_strategy(. . . )

Set a strategy for a sensor even if it is not yet known.

KATCPClientResource.
set_sensor_listener(**kwargs)

Set a sensor listener for a sensor even if it is not yet
known The listener registration should persist across
sensor disconnect/reconnect.

KATCPClientResource.start() Start the client and connect
KATCPClientResource.stop()
KATCPClientResource.
until_not_synced([timeout])

Convenience method to wait (with Future) until
client is not synced

KATCPClientResource.
until_state(state[, timeout])

Future that resolves when a certain client state is at-
tained

KATCPClientResource.
until_stopped([timeout])

Return future that resolves when the inspecting client
has stopped

KATCPClientResource.
until_synced([timeout])

Convenience method to wait (with Future) until
client is synced

KATCPClientResource.wait(**kwargs) Wait for a sensor in this resource to satisfy a condi-
tion.

KATCPClientResource.
wait_connected([timeout])

Future that resolves when the state is not ‘discon-
nected’.

MAX_LOOP_LATENCY = 0.03
When doing potentially tight loops in coroutines yield tornado.gen.moment after this much time. This is a
suggestion for methods to use.

drop_sampling_strategy(sensor_name)
Drop the sampling strategy for the named sensor from the cache

Calling set_sampling_strategy() requires the requested strategy to be memorised so that it can
automatically be reapplied. This method causes the strategy to be forgotten. There is no change to the
current strategy. No error is raised if there is no strategy to drop.

Parameters sensor_name : str

Name of the sensor

inspecting_client_factory(host, port, ioloop_set_to)
Return an instance of ReplyWrappedInspectingClientAsync or similar

Provided to ease testing. Dynamically overriding this method after instantiation but be-
fore start() is called allows for deep brain surgery. See katcp.fake_clients.
fake_inspecting_client_factory

is_connected()
Indication of the connection state

Returns True if state is not “disconnected”, i.e “syncing” or “synced”

list_sensors(filter=”, strategy=False, status=”, use_python_identifiers=True, tuple=False, re-
fresh=False)

List sensors available on this resource matching certain criteria.

140 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters filter : string, optional

Filter each returned sensor’s name against this regexp if specified. To ease the
dichotomy between Python identifier names and actual sensor names, the default
is to search on Python identifier names rather than KATCP sensor names, unless
use_python_identifiers below is set to False. Note that the sensors of subordinate
KATCPResource instances may have inconsistent names and Python identifiers, better
to always search on Python identifiers in this case.

strategy : {False, True}, optional

Only list sensors with a set strategy if True

status : string, optional

Filter each returned sensor’s status against this regexp if given

use_python_identifiers : {True, False}, optional

Match on python identifiers even the the KATCP name is available.

tuple : {True, False}, optional, Default: False

Return backwards compatible tuple instead of SensorResultTuples

refresh : {True, False}, optional, Default: False

If set the sensor values will be refreshed with get_value before returning the results.

Returns sensors : list of SensorResultTuples, or list of tuples

List of matching sensors presented as named tuples. The object field is the
KATCPSensor object associated with the sensor. Note that the name of the object
may not match name if it originates from a subordinate device.

set_ioloop(ioloop=None)
Set the tornado ioloop to use

Defaults to tornado.ioloop.IOLoop.current() if set_ioloop() is not called or if ioloop=None. Must be called
before start()

set_sampling_strategies(**kwargs)
Set a strategy for all sensors matching the filter, including unseen sensors The strategy should persist across
sensor disconnect/reconnect.

filter [str] Filter for sensor names

strategy_and_params [seq of str or str] As tuple contains (<strat_name>, [<strat_parm1>, . . . ]) where
the strategy names and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns done : tornado Future

Resolves when done

set_sampling_strategy(**kwargs)
Set a strategy for a sensor even if it is not yet known. The strategy should persist across sensor discon-
nect/reconnect.

sensor_name [str] Name of the sensor

strategy_and_params [seq of str or str] As tuple contains (<strat_name>, [<strat_parm1>, . . . ]) where
the strategy names and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

1.7. Concrete High-level KATCP Client API (resource_client) 141



KATCP Documentation, Release 0.0+unknown.202102020856

Returns done : tornado Future

Resolves when done

set_sensor_listener(**kwargs)
Set a sensor listener for a sensor even if it is not yet known The listener registration should persist across
sensor disconnect/reconnect.

sensor_name [str] Name of the sensor

listener [callable] Listening callable that will be registered on the named sensor when it becomes avail-
able. Callable as for KATCPSensor.register_listener()

start()
Start the client and connect

until_not_synced(timeout=None)
Convenience method to wait (with Future) until client is not synced

until_state(state, timeout=None)
Future that resolves when a certain client state is attained

Parameters state : str

Desired state, one of (“disconnected”, “syncing”, “synced”)

timeout: float :

Timeout for operation in seconds.

until_stopped(timeout=None)
Return future that resolves when the inspecting client has stopped

See the DeviceClient.until_stopped docstring for parameter definitions and more info.

until_synced(timeout=None)
Convenience method to wait (with Future) until client is synced

wait_connected(timeout=None)
Future that resolves when the state is not ‘disconnected’.

class katcp.resource_client.KATCPClientResourceContainer(resources_spec, log-
ger=<logging.Logger
object>)

Bases: katcp.resource.KATCPResource

Class for containing multiple KATCPClientResource instances.

Provides aggregate sensor and req attributes containing the union of all the sensors in requests in the contained
resources. Names are prefixed with <resname>_, where <resname> is the name of the resource to which the
sensor / request belongs except for aggregate sensors that starts with agg_.

Methods

KATCPClientResourceContainer.
add_child_resource_client(. . . )

Add a resource client to the container and start the
resource connection

KATCPClientResourceContainer.
add_group(. . . )

Add a new ClientGroup to container groups
member.

KATCPClientResourceContainer.
client_resource_factory(. . . )

Return an instance of KATCPClientResource or
similar

Continued on next page

142 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 53 – continued from previous page
KATCPClientResourceContainer.
is_active()
KATCPClientResourceContainer.
is_connected()

Indication of the connection state of all children

KATCPClientResourceContainer.
list_sensors([. . . ])

List sensors available on this resource matching cer-
tain criteria.

KATCPClientResourceContainer.next()
KATCPClientResourceContainer.
set_active(active)
KATCPClientResourceContainer.
set_ioloop([ioloop])

Set the tornado ioloop to use

KATCPClientResourceContainer.
set_sampling_strategies(. . . )

Set sampling strategies for filtered sensors - these
sensors have to exists.

KATCPClientResourceContainer.
set_sampling_strategy(. . . )

Set sampling strategies for the specific sensor - this
sensor has to exist

KATCPClientResourceContainer.
set_sensor_listener(. . . )

Set listener for the specific sensor - this sensor has to
exists.

KATCPClientResourceContainer.
start()

Start and connect all the subordinate clients

KATCPClientResourceContainer.stop() Stop all child resources
KATCPClientResourceContainer.
until_all_children_in_state(. . . )

Return a tornado Future; resolves when all clients are
in specified state

KATCPClientResourceContainer.
until_any_child_in_state(state)

Return a tornado Future; resolves when any client is
in specified state

KATCPClientResourceContainer.
until_not_synced(. . . )

Return a tornado Future; resolves when any subordi-
nate client is not synced

KATCPClientResourceContainer.
until_stopped([. . . ])

Return dict of futures that resolve when each child
resource has stopped

KATCPClientResourceContainer.
until_synced(. . . )

Return a tornado Future; resolves when all subordi-
nate clients are synced

KATCPClientResourceContainer.
wait(. . . [, timeout])

Wait for a sensor in this resource to satisfy a condi-
tion.

add_child_resource_client(res_name, res_spec)
Add a resource client to the container and start the resource connection

add_group(group_name, group_client_names)
Add a new ClientGroup to container groups member.

Add the group named group_name with sequence of client names to the container groups member. From
there it will be wrapped appropriately in the higher-level thread-safe container.

client_resource_factory(res_spec, parent, logger)
Return an instance of KATCPClientResource or similar

Provided to ease testing. Overriding this method allows deep brain surgery. See katcp.
fake_clients.fake_KATCP_client_resource_factory()

is_connected()
Indication of the connection state of all children

list_sensors(filter=”, strategy=False, status=”, use_python_identifiers=True, tuple=False, re-
fresh=False)

List sensors available on this resource matching certain criteria.

Parameters filter : string, optional

1.7. Concrete High-level KATCP Client API (resource_client) 143



KATCP Documentation, Release 0.0+unknown.202102020856

Filter each returned sensor’s name against this regexp if specified. To ease the
dichotomy between Python identifier names and actual sensor names, the default
is to search on Python identifier names rather than KATCP sensor names, unless
use_python_identifiers below is set to False. Note that the sensors of subordinate
KATCPResource instances may have inconsistent names and Python identifiers, better
to always search on Python identifiers in this case.

strategy : {False, True}, optional

Only list sensors with a set strategy if True

status : string, optional

Filter each returned sensor’s status against this regexp if given

use_python_identifiers : {True, False}, optional

Match on python identifiers even the the KATCP name is available.

tuple : {True, False}, optional, Default: False

Return backwards compatible tuple instead of SensorResultTuples

refresh : {True, False}, optional, Default: False

If set the sensor values will be refreshed with get_value before returning the results.

Returns sensors : list of SensorResultTuples, or list of tuples

List of matching sensors presented as named tuples. The object field is the
KATCPSensor object associated with the sensor. Note that the name of the object
may not match name if it originates from a subordinate device.

set_ioloop(ioloop=None)
Set the tornado ioloop to use

Defaults to tornado.ioloop.IOLoop.current() if set_ioloop() is not called or if ioloop=None. Must be called
before start()

set_sampling_strategies(**kwargs)
Set sampling strategies for filtered sensors - these sensors have to exists.

set_sampling_strategy(**kwargs)
Set sampling strategies for the specific sensor - this sensor has to exist

set_sensor_listener(**kwargs)
Set listener for the specific sensor - this sensor has to exists.

start()
Start and connect all the subordinate clients

stop()
Stop all child resources

until_all_children_in_state(**kwargs)
Return a tornado Future; resolves when all clients are in specified state

until_any_child_in_state(state, timeout=None)
Return a tornado Future; resolves when any client is in specified state

until_not_synced(**kwargs)
Return a tornado Future; resolves when any subordinate client is not synced

until_stopped(timeout=None)
Return dict of futures that resolve when each child resource has stopped

144 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

See the DeviceClient.until_stopped docstring for parameter definitions and more info.

until_synced(**kwargs)
Return a tornado Future; resolves when all subordinate clients are synced

wait(sensor_name, condition_or_value, timeout=5)
Wait for a sensor in this resource to satisfy a condition.

Parameters sensor_name : string

The name of the sensor to check

condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading) is
called, and must return True if its condition is satisfied. Since the reading is passed
in, the value, status, timestamp or received_timestamp attributes can all be used in the
check.

timeout : float or None

The timeout in seconds (None means wait forever)

Returns This command returns a tornado Future that resolves with True when the :

sensor value satisfies the condition, or False if the condition is :

still not satisfied after a given timeout period. :

Raises :class:‘KATCPSensorError‘ :

If the sensor does not have a strategy set, or if the named sensor is not present

class katcp.resource_client.KATCPClientResourceRequest(request_description, client,
is_active=<function
<lambda>>)

Bases: katcp.resource.KATCPRequest

Callable wrapper around a KATCP request

Methods

KATCPClientResourceRequest.
is_active()

True if resource for this request is active

KATCPClientResourceRequest.
issue_request(. . . )

Issue the wrapped request to the server.

KATCPClientResourceRequest.next()

issue_request(*args, **kwargs)
Issue the wrapped request to the server.

Parameters *args : list of objects

Arguments to pass on to the request.

Keyword Arguments timeout : float or None, optional

Timeout after this amount of seconds (keyword argument).

mid : None or int, optional

Message identifier to use for the request message. If None, use either auto-incrementing
value or no mid depending on the KATCP protocol version (mid’s were only introduced

1.7. Concrete High-level KATCP Client API (resource_client) 145



KATCP Documentation, Release 0.0+unknown.202102020856

with KATCP v5) and the value of the use_mid argument. Defaults to None.

use_mid : bool

Use a mid for the request if True.

Returns future object that resolves with an :class:‘katcp.resource.KATCPReply‘ :

instance :

class katcp.resource_client.KATCPClientResourceSensorsManager(inspecting_client,
resource_name,
log-
ger=<logging.Logger
object>)

Bases: future.types.newobject.newobject

Implementation of KATSensorsManager ABC for a directly-connected client

Assumes that all methods are called from the same ioloop context

Methods

KATCPClientResourceSensorsManager.
drop_sampling_strategy(. . . )

Drop the sampling strategy for the named sensor
from the cache

KATCPClientResourceSensorsManager.
get_sampling_strategy(. . . )

Get the current sampling strategy for the named sen-
sor

KATCPClientResourceSensorsManager.
next()
KATCPClientResourceSensorsManager.
poll_sensor(. . . )

Poll sensor and arrange for sensor object to be up-
dated

KATCPClientResourceSensorsManager.
reapply_sampling_strategies(. . . )

Reapply all sensor strategies using cached values

KATCPClientResourceSensorsManager.
sensor_factory(. . . )
KATCPClientResourceSensorsManager.
set_sampling_strategy(. . . )

Set the sampling strategy for the named sensor

drop_sampling_strategy(sensor_name)
Drop the sampling strategy for the named sensor from the cache

Calling set_sampling_strategy() requires the sensor manager to memorise the requested strategy
so that it can automatically be reapplied. If the client is no longer interested in the sensor, or knows the
sensor may be removed from the server, then it can use this method to ensure the manager forgets about
the strategy. This method will not change the current strategy. No error is raised if there is no strategy to
drop.

Parameters sensor_name : str

Name of the sensor (normal or escaped form)

get_sampling_strategy(sensor_name)
Get the current sampling strategy for the named sensor

Parameters sensor_name : str

Name of the sensor (normal or escaped form)

Returns strategy : tuple of str

146 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

contains (<strat_name>, [<strat_parm1>, . . . ]) where the strategy names and parameters
are as defined by the KATCP spec

poll_sensor(**kwargs)
Poll sensor and arrange for sensor object to be updated

Returns done_future : tornado Future

Resolves when the poll is complete, or raises KATCPSensorError

reapply_sampling_strategies(**kwargs)
Reapply all sensor strategies using cached values

set_sampling_strategy(**kwargs)
Set the sampling strategy for the named sensor

Parameters sensor_name : str

Name of the sensor

strategy_and_params : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . . ]) where the strategy names and
parameters are as defined by the KATCP spec. As str contains the same elements in
space-separated form.

Returns sensor_strategy : tuple

(success, info) with

success [bool] True if setting succeeded for this sensor, else False

info [tuple] Normalised sensor strategy and parameters as tuple if success == True else,
sys.exc_info() tuple for the error that occurred.

class katcp.resource_client.MappingProxy(mapping, wrapper)
Bases: _abcoll.Mapping

Methods

MappingProxy.get(k[,d])
MappingProxy.items()
MappingProxy.iteritems()
MappingProxy.iterkeys()
MappingProxy.itervalues()
MappingProxy.keys()
MappingProxy.values()

class katcp.resource_client.ReplyWrappedInspectingClientAsync(host, port,
ioloop=None, ini-
tial_inspection=None,
auto_reconnect=True,
log-
ger=<logging.Logger
object>)

Bases: katcp.inspecting_client.InspectingClientAsync

Adds wrapped_request() method that wraps reply in a KATCPReply

1.7. Concrete High-level KATCP Client API (resource_client) 147



KATCP Documentation, Release 0.0+unknown.202102020856

Methods

ReplyWrappedInspectingClientAsync.
close()
ReplyWrappedInspectingClientAsync.
connect(. . . )

Connect to KATCP interface, starting what is needed

ReplyWrappedInspectingClientAsync.
future_check_request(. . . )

Check if the request exists.

ReplyWrappedInspectingClientAsync.
future_check_sensor(. . . )

Check if the sensor exists.

ReplyWrappedInspectingClientAsync.
future_get_request(. . . )

Get the request object.

ReplyWrappedInspectingClientAsync.
future_get_sensor(. . . )

Get the sensor object.

ReplyWrappedInspectingClientAsync.
handle_sensor_value()

Handle #sensor-value informs just like #sensor-
status informs

ReplyWrappedInspectingClientAsync.
inform_hook_client_factory(. . . )

Return an instance of
_InformHookDeviceClient or similar

ReplyWrappedInspectingClientAsync.
inspect(. . . )

Inspect device requests and sensors, update model.

ReplyWrappedInspectingClientAsync.
inspect_requests(. . . )

Inspect all or one requests on the device.

ReplyWrappedInspectingClientAsync.
inspect_sensors(. . . )

Inspect all or one sensor on the device.

ReplyWrappedInspectingClientAsync.
is_connected()

Connection status.

ReplyWrappedInspectingClientAsync.
join([timeout])
ReplyWrappedInspectingClientAsync.
next()
ReplyWrappedInspectingClientAsync.
preset_protocol_flags(. . . )

Preset server protocol flags.

ReplyWrappedInspectingClientAsync.
reply_wrapper(x)
ReplyWrappedInspectingClientAsync.
request_factory

alias of katcp.inspecting_client.
Request

ReplyWrappedInspectingClientAsync.
sensor_factory

alias of katcp.core.Sensor

ReplyWrappedInspectingClientAsync.
set_ioloop(ioloop)
ReplyWrappedInspectingClientAsync.
set_state_callback(cb)

Set user callback for state changes

ReplyWrappedInspectingClientAsync.
simple_request(. . . )

Create and send a request to the server.

ReplyWrappedInspectingClientAsync.
start([. . . ])

Note: always call stop() and wait until_stopped()
when you are done with the container to make sure
the container cleans up correctly.

ReplyWrappedInspectingClientAsync.
stop([timeout])
ReplyWrappedInspectingClientAsync.
until_connected([. . . ])

Continued on next page

148 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 57 – continued from previous page
ReplyWrappedInspectingClientAsync.
until_data_synced([. . . ])
ReplyWrappedInspectingClientAsync.
until_not_synced([. . . ])
ReplyWrappedInspectingClientAsync.
until_state(. . . )

Wait until state is desired_state, Inspecting-
ClientStateType instance

ReplyWrappedInspectingClientAsync.
until_stopped([. . . ])

Return future that resolves when the client has
stopped

ReplyWrappedInspectingClientAsync.
until_synced([. . . ])
ReplyWrappedInspectingClientAsync.
update_sensor(. . . )
ReplyWrappedInspectingClientAsync.
wrapped_request(. . . )

Create and send a request to the server.

wrapped_request(request, *args, **kwargs)
Create and send a request to the server.

This method implements a very small subset of the options possible to send an request. It is provided as a
shortcut to sending a simple wrapped request.

Parameters request : str

The request to call.

*args : list of objects

Arguments to pass on to the request.

Keyword Arguments timeout : float or None, optional

Timeout after this amount of seconds (keyword argument).

mid : None or int, optional

Message identifier to use for the request message. If None, use either auto-incrementing
value or no mid depending on the KATCP protocol version (mid’s were only introduced
with KATCP v5) and the value of the use_mid argument. Defaults to None.

use_mid : bool

Use a mid for the request if True.

Returns future object that resolves with the :

:meth:‘katcp.client.DeviceClient.future_request‘ response wrapped in :

self.reply_wrapper :

class katcp.resource_client.ThreadSafeKATCPClientGroupWrapper(subject,
ioloop_wrapper)

Bases: katcp.ioloop_manager.ThreadSafeMethodAttrWrapper

Thread safe wrapper for ClientGroup

Methods

1.7. Concrete High-level KATCP Client API (resource_client) 149



KATCP Documentation, Release 0.0+unknown.202102020856

ThreadSafeKATCPClientGroupWrapper.
next()

class katcp.resource_client.ThreadSafeKATCPClientResourceRequestWrapper(subject,
ioloop_wrapper)

Bases: katcp.ioloop_manager.ThreadSafeMethodAttrWrapper

Methods

ThreadSafeKATCPClientResourceRequestWrapper.
next()

class katcp.resource_client.ThreadSafeKATCPClientResourceWrapper(subject,
ioloop_wrapper)

Bases: katcp.ioloop_manager.ThreadSafeMethodAttrWrapper

Should work with both KATCPClientResource or KATCPClientResourceContainer

Methods

ThreadSafeKATCPClientResourceWrapper.
next()

class katcp.resource_client.ThreadSafeKATCPSensorWrapper(subject,
ioloop_wrapper)

Bases: katcp.ioloop_manager.ThreadSafeMethodAttrWrapper

Methods

ThreadSafeKATCPSensorWrapper.next()

katcp.resource_client.list_sensors(*args, **kwargs)
Helper for implementing katcp.resource.KATCPResource.list_sensors()

Parameters sensor_items : tuple of sensor-item tuples

As would be returned the items() method of a dict containing KATCPSensor objects
keyed by Python-identifiers.

parent_class: KATCPClientResource or KATCPClientResourceContainer :

Is used for prefix calculation

Rest of parameters as for :meth:‘katcp.resource.KATCPResource.list_sensors‘ :

katcp.resource_client.monitor_resource_sync_state(*args, **kwargs)
Coroutine that monitors a KATCPResource’s sync state.

Calls callback(True/False) whenever the resource becomes synced or unsynced. Will always do an initial call-
back(False) call. Exits without calling callback() if exit_event is set.

Warning: set the monitor’s exit_event before stopping the resources being monitored, otherwise it could result
in a memory leak. The until_synced() or until_not_synced() methods could keep a reference to the resource

150 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

alive.

katcp.resource_client.transform_future(transformation, future)
Returns a new future that will resolve with a transformed value.

Takes the resolution value of future and applies “transformation(*future.result())” to it before setting the result
of the new future with the transformed value. If future() resolves with an exception, it is passed through to the
new future.

Assumes future is a tornado Future.

1.8 Sampling

Strategies for sampling sensor values.

class katcp.sampling.SampleAuto(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleStrategy

Strategy which sends updates whenever the sensor itself is updated.

Methods

SampleAuto.attach() Attach strategy to its sensor and send initial update.
SampleAuto.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleAuto.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SampleAuto.detach() Detach strategy from its sensor.
SampleAuto.get_sampling() The Strategy constant for this sampling strategy.
SampleAuto.get_sampling_formatted() The current sampling strategy and parameters.
SampleAuto.get_strategy(strategyName,
. . . )

Factory method to create a strategy object.

SampleAuto.inform(reading) Inform strategy creator of the sensor status.
SampleAuto.start() Start operating the strategy.
SampleAuto.update(sensor, reading) Callback used by the sensor’s notify() method.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

update(sensor, reading)
Callback used by the sensor’s notify() method.

This update method is called whenever the sensor value is set so sensor will contain the right info. Note
that the strategy does not really need to be passed a sensor because it already has a handle to it, but receives
it due to the generic observer mechanism.

Sub-classes should override this method or start() to provide the necessary sampling strategy. Sub-
classes should also ensure that update() is thread-safe; an easy way to do this is by using the @up-
date_in_ioloop decorator.

1.8. Sampling 151



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters sensor : Sensor object

The sensor which was just updated.

reading : (timestamp, status, value) tuple

Sensor reading as would be returned by sensor.read()

class katcp.sampling.SampleDifferential(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleStrategy

Differential sampling strategy for integer and float sensors.

Sends updates only when the value has changed by more than some specified threshold, or the status changes.

Methods

SampleDifferential.attach() Attach strategy to its sensor and send initial update.
SampleDifferential.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleDifferential.
cancel_timeouts()

Override this method to cancel any outstanding
ioloop timeouts.

SampleDifferential.detach() Detach strategy from its sensor.
SampleDifferential.get_sampling() The Strategy constant for this sampling strategy.
SampleDifferential.
get_sampling_formatted()

The current sampling strategy and parameters.

SampleDifferential.get_strategy(. . . ) Factory method to create a strategy object.
SampleDifferential.inform(reading) Inform strategy creator of the sensor status.
SampleDifferential.start() Start operating the strategy.
SampleDifferential.update(sensor, read-
ing)

Callback used by the sensor’s notify() method.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

update(sensor, reading)
Callback used by the sensor’s notify() method.

This update method is called whenever the sensor value is set so sensor will contain the right info. Note
that the strategy does not really need to be passed a sensor because it already has a handle to it, but receives
it due to the generic observer mechanism.

Sub-classes should override this method or start() to provide the necessary sampling strategy. Sub-
classes should also ensure that update() is thread-safe; an easy way to do this is by using the @up-
date_in_ioloop decorator.

Parameters sensor : Sensor object

The sensor which was just updated.

reading : (timestamp, status, value) tuple

Sensor reading as would be returned by sensor.read()

152 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

class katcp.sampling.SampleDifferentialRate(inform_callback, sensor, *params,
**kwargs)

Bases: katcp.sampling.SampleEventRate

Differential rate sampling strategy.

Report the value whenever it changes by more than difference from the last reported value or if more than
longest_period seconds have passed since the last reported update. However, do not report the value until
shortest_period seconds have passed since the last reported update. The behaviour if shortest_period is greater
than longest_period is undefined. May only be implemented for float and integer sensors.

Methods

SampleDifferentialRate.attach() Attach strategy to its sensor and send initial update.
SampleDifferentialRate.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleDifferentialRate.
cancel_timeouts()

Override this method to cancel any outstanding
ioloop timeouts.

SampleDifferentialRate.detach() Detach strategy from its sensor.
SampleDifferentialRate.
get_sampling()

The Strategy constant for this sampling strategy.

SampleDifferentialRate.
get_sampling_formatted()

The current sampling strategy and parameters.

SampleDifferentialRate.
get_strategy(. . . )

Factory method to create a strategy object.

SampleDifferentialRate.
inform(reading)

Inform strategy creator of the sensor status.

SampleDifferentialRate.start() Start operating the strategy.
SampleDifferentialRate.update(sensor,
reading)

Callback used by the sensor’s notify() method.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

class katcp.sampling.SampleEvent(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleEventRate

Strategy which sends updates when the sensor value or status changes.

Since SampleEvent is just a special case of SampleEventRate, we use SampleEventRate with the appropriate
default values to implement SampleEvent.

Methods

SampleEvent.attach() Attach strategy to its sensor and send initial update.
SampleEvent.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
Continued on next page

1.8. Sampling 153



KATCP Documentation, Release 0.0+unknown.202102020856

Table 65 – continued from previous page
SampleEvent.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SampleEvent.detach() Detach strategy from its sensor.
SampleEvent.get_sampling() The Strategy constant for this sampling strategy.
SampleEvent.get_sampling_formatted() The current sampling strategy and parameters.
SampleEvent.get_strategy(strategyName,
. . . )

Factory method to create a strategy object.

SampleEvent.inform(reading) Inform strategy creator of the sensor status.
SampleEvent.start() Start operating the strategy.
SampleEvent.update(sensor, reading) Callback used by the sensor’s notify() method.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

class katcp.sampling.SampleEventRate(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleStrategy

Event rate sampling strategy.

Report the sensor value whenever it changes or if more than longest_period seconds have passed since the last
reported update. However, do not report the value if less than shortest_period seconds have passed since the last
reported update.

Methods

SampleEventRate.attach() Attach strategy to its sensor and send initial update.
SampleEventRate.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleEventRate.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SampleEventRate.detach() Detach strategy from its sensor.
SampleEventRate.get_sampling() The Strategy constant for this sampling strategy.
SampleEventRate.
get_sampling_formatted()

The current sampling strategy and parameters.

SampleEventRate.
get_strategy(strategyName, . . . )

Factory method to create a strategy object.

SampleEventRate.inform(reading) Inform strategy creator of the sensor status.
SampleEventRate.start() Start operating the strategy.
SampleEventRate.update(sensor, reading) Callback used by the sensor’s notify() method.

cancel_timeouts()
Override this method to cancel any outstanding ioloop timeouts.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

154 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

The strategy type constant for this strategy.

inform(reading)
Inform strategy creator of the sensor status.

start()
Start operating the strategy.

Subclasses that override start() should call the super method before it does anything that uses the
ioloop. This will attach to the sensor as an observer if OBSERVE_UPDATES is True, and sets
_ioloop_thread_id using thread.get_ident().

update(sensor, reading)
Callback used by the sensor’s notify() method.

This update method is called whenever the sensor value is set so sensor will contain the right info. Note
that the strategy does not really need to be passed a sensor because it already has a handle to it, but receives
it due to the generic observer mechanism.

Sub-classes should override this method or start() to provide the necessary sampling strategy. Sub-
classes should also ensure that update() is thread-safe; an easy way to do this is by using the @up-
date_in_ioloop decorator.

Parameters sensor : Sensor object

The sensor which was just updated.

reading : (timestamp, status, value) tuple

Sensor reading as would be returned by sensor.read()

class katcp.sampling.SampleNone(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleStrategy

Sampling strategy which never sends any updates.

Methods

SampleNone.attach() Attach strategy to its sensor and send initial update.
SampleNone.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleNone.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SampleNone.detach() Detach strategy from its sensor.
SampleNone.get_sampling() The Strategy constant for this sampling strategy.
SampleNone.get_sampling_formatted() The current sampling strategy and parameters.
SampleNone.get_strategy(strategyName,
. . . )

Factory method to create a strategy object.

SampleNone.inform(reading) Inform strategy creator of the sensor status.
SampleNone.start() Start operating the strategy.
SampleNone.update(sensor, reading) Callback used by the sensor’s notify() method.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

1.8. Sampling 155



KATCP Documentation, Release 0.0+unknown.202102020856

The strategy type constant for this strategy.

start()
Start operating the strategy.

Subclasses that override start() should call the super method before it does anything that uses the
ioloop. This will attach to the sensor as an observer if OBSERVE_UPDATES is True, and sets
_ioloop_thread_id using thread.get_ident().

class katcp.sampling.SamplePeriod(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleStrategy

Periodic sampling strategy.

Methods

SamplePeriod.attach() Attach strategy to its sensor and send initial update.
SamplePeriod.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SamplePeriod.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SamplePeriod.detach() Detach strategy from its sensor.
SamplePeriod.get_sampling() The Strategy constant for this sampling strategy.
SamplePeriod.get_sampling_formatted() The current sampling strategy and parameters.
SamplePeriod.get_strategy(strategyName,
. . . )

Factory method to create a strategy object.

SamplePeriod.inform(reading) Inform strategy creator of the sensor status.
SamplePeriod.start() Start operating the strategy.
SamplePeriod.update(sensor, reading) Callback used by the sensor’s notify() method.

cancel_timeouts()
Override this method to cancel any outstanding ioloop timeouts.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

start()
Start operating the strategy.

Subclasses that override start() should call the super method before it does anything that uses the
ioloop. This will attach to the sensor as an observer if OBSERVE_UPDATES is True, and sets
_ioloop_thread_id using thread.get_ident().

class katcp.sampling.SampleStrategy(inform_callback, sensor, *params, **kwargs)
Bases: object

Base class for strategies for sampling sensors.

Parameters inform_callback : callable, signature inform_callback(sensor_obj, reading)

Callback to receive inform messages.

sensor : Sensor object

156 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Sensor to sample.

params : list of objects

Custom sampling parameters.

Methods

SampleStrategy.attach() Attach strategy to its sensor and send initial update.
SampleStrategy.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleStrategy.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SampleStrategy.detach() Detach strategy from its sensor.
SampleStrategy.get_sampling() The Strategy constant for this sampling strategy.
SampleStrategy.
get_sampling_formatted()

The current sampling strategy and parameters.

SampleStrategy.
get_strategy(strategyName, . . . )

Factory method to create a strategy object.

SampleStrategy.inform(reading) Inform strategy creator of the sensor status.
SampleStrategy.start() Start operating the strategy.
SampleStrategy.update(sensor, reading) Callback used by the sensor’s notify() method.

OBSERVE_UPDATES = False
True if a strategy must be attached to its sensor as an observer

attach()
Attach strategy to its sensor and send initial update.

cancel()
Detach strategy from its sensor and cancel ioloop callbacks.

cancel_timeouts()
Override this method to cancel any outstanding ioloop timeouts.

detach()
Detach strategy from its sensor.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

get_sampling_formatted()
The current sampling strategy and parameters.

The strategy is returned as a byte string and the values in the parameter list are formatted as byte strings
using the formatter for this sensor type.

Returns strategy_name : bytes

KATCP name for the strategy.

params : list of bytes

KATCP formatted parameters for the strategy.

1.8. Sampling 157



KATCP Documentation, Release 0.0+unknown.202102020856

classmethod get_strategy(strategyName, inform_callback, sensor, *params, **kwargs)
Factory method to create a strategy object.

Parameters strategyName : str or bytes

Name of strategy.

inform_callback : callable, signature inform_callback(sensor, reading)

Callback to receive inform messages.

sensor : Sensor object

Sensor to sample.

params : list of objects

Custom sampling parameters for specified strategy.

Keyword Arguments ioloop : tornado.ioloop.IOLoop instance, optional

Tornado ioloop to use, otherwise tornado.ioloop.IOLoop.current()

Returns strategy : SampleStrategy object

The created sampling strategy.

inform(reading)
Inform strategy creator of the sensor status.

start()
Start operating the strategy.

Subclasses that override start() should call the super method before it does anything that uses the
ioloop. This will attach to the sensor as an observer if OBSERVE_UPDATES is True, and sets
_ioloop_thread_id using thread.get_ident().

update(sensor, reading)
Callback used by the sensor’s notify() method.

This update method is called whenever the sensor value is set so sensor will contain the right info. Note
that the strategy does not really need to be passed a sensor because it already has a handle to it, but receives
it due to the generic observer mechanism.

Sub-classes should override this method or start() to provide the necessary sampling strategy. Sub-
classes should also ensure that update() is thread-safe; an easy way to do this is by using the @up-
date_in_ioloop decorator.

Parameters sensor : Sensor object

The sensor which was just updated.

reading : (timestamp, status, value) tuple

Sensor reading as would be returned by sensor.read()

katcp.sampling.update_in_ioloop(update)
Decorator that ensures an update() method is run in the tornado ioloop.

Does this by checking the thread identity. Requires that the object to which the method is bound has the attributes
_ioloop_thread_id (the result of thread.get_ident() in the ioloop thread) and ioloop (the ioloop instance
in use). Also assumes the signature update(self, sensor, reading) for the method.

158 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

1.9 KATCP Server API (server)

Servers for the KAT device control language.

class katcp.server.AsyncDeviceServer(*args, **kwargs)
Bases: katcp.server.DeviceServer

DeviceServer that is automatically configured for async use.

Same as instantiating a DeviceServer instance and calling meth-
ods set_concurrency_options(thread_safe=False, handler_thread=False) and
set_ioloop(tornado.ioloop.IOLoop.current()) before starting.

Methods

AsyncDeviceServer.add_sensor(sensor) Add a sensor to the device.
AsyncDeviceServer.build_state() Return build state string of the form name-

major.minor[(a|b|rc)n].
AsyncDeviceServer.
clear_strategies(client_conn)

Clear the sensor strategies of a client connection.

AsyncDeviceServer.
create_exception_reply_and_log(. . . )
AsyncDeviceServer.
create_log_inform(. . . [, . . . ])

Create a katcp logging inform message.

AsyncDeviceServer.
get_sensor(sensor_name)

Fetch the sensor with the given name.

AsyncDeviceServer.get_sensors() Fetch a list of all sensors.
AsyncDeviceServer.
handle_inform(connection, msg)

Dispatch an inform message to the appropriate
method.

AsyncDeviceServer.
handle_message(. . . )

Handle messages of all types from clients.

AsyncDeviceServer.
handle_reply(connection, msg)

Dispatch a reply message to the appropriate method.

AsyncDeviceServer.
handle_request(connection, msg)

Dispatch a request message to the appropriate
method.

AsyncDeviceServer.
has_sensor(sensor_name)

Whether the sensor with specified name is known.

AsyncDeviceServer.inform(connection,
msg)

Send an inform message to a particular client.

AsyncDeviceServer.join([timeout]) Rejoin the server thread.
AsyncDeviceServer.mass_inform(msg) Send an inform message to all clients.
AsyncDeviceServer.next()
AsyncDeviceServer.
on_client_connect(**kwargs)

Inform client of build state and version on connect.

AsyncDeviceServer.
on_client_disconnect(. . . )

Inform client it is about to be disconnected.

AsyncDeviceServer.
on_message(client_conn, msg)

Dummy implementation of on_message required by
KATCPServer.

AsyncDeviceServer.
remove_sensor(sensor)

Remove a sensor from the device.

AsyncDeviceServer.reply(connection,
reply, . . . )

Send an asynchronous reply to an earlier request.

Continued on next page

1.9. KATCP Server API (server) 159



KATCP Documentation, Release 0.0+unknown.202102020856

Table 70 – continued from previous page
AsyncDeviceServer.
reply_inform(connection, . . . )

Send an inform as part of the reply to an earlier re-
quest.

AsyncDeviceServer.
request_client_list(req, msg)

Request the list of connected clients.

AsyncDeviceServer.request_halt(req,
msg)

Halt the device server.

AsyncDeviceServer.request_help(req,
msg)

Return help on the available requests.

AsyncDeviceServer.
request_log_level(req, msg)

Query or set the current logging level.

AsyncDeviceServer.
request_request_timeout_hint(. . . )

Return timeout hints for requests

AsyncDeviceServer.
request_restart(req, msg)

Restart the device server.

AsyncDeviceServer.
request_sensor_list(req, msg)

Request the list of sensors.

AsyncDeviceServer.
request_sensor_sampling(. . . )

Configure or query the way a sensor is sampled.

AsyncDeviceServer.
request_sensor_sampling_clear(. . . )

Set all sampling strategies for this client to none.

AsyncDeviceServer.
request_sensor_value(req, msg)

Request the value of a sensor or sensors.

AsyncDeviceServer.
request_version_list(req, msg)

Request the list of versions of roles and subcompo-
nents.

AsyncDeviceServer.
request_watchdog(req, msg)

Check that the server is still alive.

AsyncDeviceServer.running() Whether the server is running.
AsyncDeviceServer.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
AsyncDeviceServer.
set_concurrency_options([. . . ])

Set concurrency options for this device server.

AsyncDeviceServer.set_ioloop([ioloop]) Set the tornado IOLoop to use.
AsyncDeviceServer.
set_restart_queue(. . . )

Set the restart queue.

AsyncDeviceServer.setup_sensors() Populate the dictionary of sensors.
AsyncDeviceServer.start([timeout]) Start the server in a new thread.
AsyncDeviceServer.stop([timeout]) Stop a running server (from another thread).
AsyncDeviceServer.
sync_with_ioloop([timeout])

Block for ioloop to complete a loop if called from
another thread.

AsyncDeviceServer.version() Return a version string of the form type-major.minor.
AsyncDeviceServer.
wait_running([timeout])

Wait until the server is running

katcp.server.BASE_REQUESTS = frozenset(['sensor-sampling', 'help', 'new-command', 'raise-fail', 'client-list', 'log-level', 'raise-exception', 'version-list', 'sensor-value', 'sensor-sampling-clear', 'watchdog', 'sensor-list', 'restart', 'halt'])
List of basic KATCP requests that a minimal device server should implement

class katcp.server.ClientConnection(server, conn_id)
Bases: future.types.newobject.newobject

Encapsulates the connection between a single client and the server.

160 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Methods

ClientConnection.disconnect(reason) Disconnect this client connection for specified rea-
son

ClientConnection.inform(msg) Send an inform message to a particular client.
ClientConnection.mass_inform(msg) Send an inform message to all clients.
ClientConnection.next()
ClientConnection.
on_client_disconnect_was_called()

Prevent multiple calls to on_client_disconnect han-
dler.

ClientConnection.reply(reply, orig_req) Send an asynchronous reply to an earlier request.
ClientConnection.reply_inform(inform,
orig_req)

Send an inform as part of the reply to an earlier re-
quest.

disconnect(reason)
Disconnect this client connection for specified reason

inform(msg)
Send an inform message to a particular client.

Should only be used for asynchronous informs. Informs that are part of the response to a request should
use reply_inform() so that the message identifier from the original request can be attached to the
inform.

Parameters msg : Message object

The inform message to send.

mass_inform(msg)
Send an inform message to all clients.

Parameters msg : Message object

The inform message to send.

on_client_disconnect_was_called()
Prevent multiple calls to on_client_disconnect handler.

Call this when an on_client_disconnect handler has been called.

reply(reply, orig_req)
Send an asynchronous reply to an earlier request.

Parameters reply : Message object

The reply message to send.

orig_req : Message object

The request message being replied to. The reply message’s id is overridden with the id
from orig_req before the reply is sent.

reply_inform(inform, orig_req)
Send an inform as part of the reply to an earlier request.

Parameters inform : Message object

The inform message to send.

orig_req : Message object

The request message being replied to. The inform message’s id is overridden with the
id from orig_req before the inform is sent.

1.9. KATCP Server API (server) 161



KATCP Documentation, Release 0.0+unknown.202102020856

class katcp.server.ClientRequestConnection(client_connection, req_msg)
Bases: future.types.newobject.newobject

Encapsulates specific KATCP request and associated client connection.

Methods

ClientRequestConnection.inform(*args)
ClientRequestConnection.
inform_after_reply(*args)
ClientRequestConnection.
make_reply(*args)
ClientRequestConnection.next()
ClientRequestConnection.reply(*args)
ClientRequestConnection.
reply_again(*args)
ClientRequestConnection.
reply_with_message(rep_msg)

Send a pre-created reply message to the client con-
nection.

reply_with_message(rep_msg)
Send a pre-created reply message to the client connection.

Will check that rep_msg.name matches the bound request.

class katcp.server.DeviceLogger(device_server, root_logger=’root’, python_logger=None)
Bases: future.types.newobject.newobject

Object for logging messages from a DeviceServer.

Log messages are logged at a particular level and under a particular name. Names use dotted notation to form a
virtual hierarchy of loggers with the device.

Parameters device_server : DeviceServerBase object

The device server this logger should use for sending out logs.

root_logger : str

The name of the root logger.

Methods

DeviceLogger.debug(msg, *args, **kwargs) Log a debug message.
DeviceLogger.error(msg, *args, **kwargs) Log an error message.
DeviceLogger.fatal(msg, *args, **kwargs) Log a fatal error message.
DeviceLogger.info(msg, *args, **kwargs) Log an info message.
DeviceLogger.level_from_name(level_name) Return the level constant for a given name.
DeviceLogger.level_name([level]) Return the name of the given level value.
DeviceLogger.log(level, msg, *args,
**kwargs)

Log a message and inform all clients.

DeviceLogger.log_to_python(logger, msg) Log a KATCP logging message to a Python logger.
DeviceLogger.next()
DeviceLogger.set_log_level(level) Set the logging level.
DeviceLogger.set_log_level_by_name(level_name)Set the logging level using a level name.

Continued on next page

162 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Table 73 – continued from previous page
DeviceLogger.trace(msg, *args, **kwargs) Log a trace message.
DeviceLogger.warn(msg, *args, **kwargs) Log an warning message.

debug(msg, *args, **kwargs)
Log a debug message.

error(msg, *args, **kwargs)
Log an error message.

fatal(msg, *args, **kwargs)
Log a fatal error message.

info(msg, *args, **kwargs)
Log an info message.

level_from_name(level_name)
Return the level constant for a given name.

If the level_name is not known, raise a ValueError.

Parameters level_name : str or bytes

The logging level name whose logging level constant to retrieve.

Returns level : logging level constant

The logging level constant associated with the name.

level_name(level=None)
Return the name of the given level value.

If level is None, return the name of the current level.

Parameters level : logging level constant

The logging level constant whose name to retrieve.

Returns level_name : str

The name of the logging level.

log(level, msg, *args, **kwargs)
Log a message and inform all clients.

Parameters level : logging level constant

The level to log the message at.

msg : str

The text format for the log message.

args : list of objects

Arguments to pass to log format string. Final message text is created using: msg %
args.

kwargs : additional keyword parameters

Allowed keywords are ‘name’ and ‘timestamp’. The name is the name of the logger to
log the message to. If not given the name defaults to the root logger. The timestamp is
a float in seconds. If not given the timestamp defaults to the current time.

classmethod log_to_python(logger, msg)
Log a KATCP logging message to a Python logger.

1.9. KATCP Server API (server) 163



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters logger : logging.Logger object

The Python logger to log the given message to.

msg : Message object

The #log message to create a log entry from.

set_log_level(level)
Set the logging level.

Parameters level : logging level constant

The value to set the logging level to.

set_log_level_by_name(level_name)
Set the logging level using a level name.

Parameters level_name : str or bytes

The name of the logging level.

trace(msg, *args, **kwargs)
Log a trace message.

warn(msg, *args, **kwargs)
Log an warning message.

class katcp.server.DeviceServer(*args, **kwargs)
Bases: katcp.server.DeviceServerBase

Implements some standard messages on top of DeviceServerBase.

Inform messages handled are:

• version (sent on connect)

• build-state (sent on connect)

• log (via self.log.warn(. . . ), etc)

• disconnect

• client-connected

Requests handled are:

• halt

• help

• log-level

• restart1

• client-list

• sensor-list

• sensor-sampling

• sensor-value

• watchdog

• version-list (only standard in KATCP v5 or later)

1 Restart relies on .set_restart_queue() being used to register a restart queue with the device. When the device needs to be restarted, it will be
added to the restart queue. The queue should be a Python Queue.Queue object without a maximum size.

164 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

• request-timeout-hint (pre-standard only if protocol flags indicates timeout hints, supported for
KATCP v5.1 or later)

• sensor-sampling-clear (non-standard)

Unhandled standard requests are:

• configure

• mode

Subclasses can define the tuple VERSION_INFO to set the interface name, major and minor version numbers.
The BUILD_INFO tuple can be defined to give a string describing a particular interface instance and may have
a fourth element containing additional version information (e.g. rc1).

Subclasses may manipulate the versions returned by the ?version-list command by editing .extra_versions
which is a dictionary mapping role or component names to (version, build_state_or_serial_no) tuples. The
build_state_or_serial_no may be None.

Subclasses must override the .setup_sensors() method. If they have no sensors to register, the method should
just be a pass.

Methods

DeviceServer.add_sensor(sensor) Add a sensor to the device.
DeviceServer.build_state() Return build state string of the form name-

major.minor[(a|b|rc)n].
DeviceServer.clear_strategies(client_conn[,
. . . ])

Clear the sensor strategies of a client connection.

DeviceServer.create_exception_reply_and_log(. . . )
DeviceServer.create_log_inform(level_name,
. . . )

Create a katcp logging inform message.

DeviceServer.get_sensor(sensor_name) Fetch the sensor with the given name.
DeviceServer.get_sensors() Fetch a list of all sensors.
DeviceServer.handle_inform(connection,
msg)

Dispatch an inform message to the appropriate
method.

DeviceServer.handle_message(client_conn,
msg)

Handle messages of all types from clients.

DeviceServer.handle_reply(connection,
msg)

Dispatch a reply message to the appropriate method.

DeviceServer.handle_request(connection,
msg)

Dispatch a request message to the appropriate
method.

DeviceServer.has_sensor(sensor_name) Whether the sensor with specified name is known.
DeviceServer.inform(connection, msg) Send an inform message to a particular client.
DeviceServer.join([timeout]) Rejoin the server thread.
DeviceServer.mass_inform(msg) Send an inform message to all clients.
DeviceServer.next()
DeviceServer.on_client_connect(**kwargs)Inform client of build state and version on connect.
DeviceServer.on_client_disconnect(. . . ) Inform client it is about to be disconnected.
DeviceServer.on_message(client_conn,
msg)

Dummy implementation of on_message required by
KATCPServer.

DeviceServer.remove_sensor(sensor) Remove a sensor from the device.
DeviceServer.reply(connection, reply,
orig_req)

Send an asynchronous reply to an earlier request.

Continued on next page

1.9. KATCP Server API (server) 165



KATCP Documentation, Release 0.0+unknown.202102020856

Table 74 – continued from previous page
DeviceServer.reply_inform(connection,
. . . )

Send an inform as part of the reply to an earlier re-
quest.

DeviceServer.request_client_list(req,
msg)

Request the list of connected clients.

DeviceServer.request_halt(req, msg) Halt the device server.
DeviceServer.request_help(req, msg) Return help on the available requests.
DeviceServer.request_log_level(req,
msg)

Query or set the current logging level.

DeviceServer.request_request_timeout_hint(. . . )Return timeout hints for requests
DeviceServer.request_restart(req, msg) Restart the device server.
DeviceServer.request_sensor_list(req,
msg)

Request the list of sensors.

DeviceServer.request_sensor_sampling(req,
msg)

Configure or query the way a sensor is sampled.

DeviceServer.request_sensor_sampling_clear(. . . )Set all sampling strategies for this client to none.
DeviceServer.request_sensor_value(req,
msg)

Request the value of a sensor or sensors.

DeviceServer.request_version_list(req,
msg)

Request the list of versions of roles and subcompo-
nents.

DeviceServer.request_watchdog(req,
msg)

Check that the server is still alive.

DeviceServer.running() Whether the server is running.
DeviceServer.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
DeviceServer.set_concurrency_options([. . . ])Set concurrency options for this device server.
DeviceServer.set_ioloop([ioloop]) Set the tornado IOLoop to use.
DeviceServer.set_restart_queue(restart_queue)Set the restart queue.
DeviceServer.setup_sensors() Populate the dictionary of sensors.
DeviceServer.start([timeout]) Start the server in a new thread.
DeviceServer.stop([timeout]) Stop a running server (from another thread).
DeviceServer.sync_with_ioloop([timeout]) Block for ioloop to complete a loop if called from

another thread.
DeviceServer.version() Return a version string of the form type-major.minor.
DeviceServer.wait_running([timeout]) Wait until the server is running

add_sensor(sensor)
Add a sensor to the device.

Usually called inside .setup_sensors() but may be called from elsewhere.

Parameters sensor : Sensor object

The sensor object to register with the device server.

build_state()
Return build state string of the form name-major.minor[(a|b|rc)n].

clear_strategies(client_conn, remove_client=False)
Clear the sensor strategies of a client connection.

Parameters client_connection : ClientConnection instance

The connection that should have its sampling strategies cleared

remove_client : bool, optional

166 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Remove the client connection from the strategies data-structure. Useful for clients that
disconnect.

get_sensor(sensor_name)
Fetch the sensor with the given name.

Parameters sensor_name : str

Name of the sensor to retrieve.

Returns sensor : Sensor object

The sensor with the given name.

get_sensors()
Fetch a list of all sensors.

Returns sensors : list of Sensor objects

The list of sensors registered with the device server.

has_sensor(sensor_name)
Whether the sensor with specified name is known.

on_client_connect(**kwargs)
Inform client of build state and version on connect.

Parameters client_conn : ClientConnection object

The client connection that has been successfully established.

Returns Future that resolves when the device is ready to accept messages. :

on_client_disconnect(client_conn, msg, connection_valid)
Inform client it is about to be disconnected.

Parameters client_conn : ClientConnection object

The client connection being disconnected.

msg : str

Reason client is being disconnected.

connection_valid : bool

True if connection is still open for sending, False otherwise.

Returns Future that resolves when the client connection can be closed. :

remove_sensor(sensor)
Remove a sensor from the device.

Also deregisters all clients observing the sensor.

Parameters sensor : Sensor object or name string

The sensor to remove from the device server.

request_client_list(req, msg)
Request the list of connected clients.

The list of clients is sent as a sequence of #client-list informs.

Informs addr : str

1.9. KATCP Server API (server) 167



KATCP Documentation, Release 0.0+unknown.202102020856

The address of the client as host:port with host in dotted quad notation. If the address
of the client could not be determined (because, for example, the client disconnected
suddenly) then a unique string representing the client is sent instead.

Returns success : {‘ok’, ‘fail’}

Whether sending the client list succeeded.

informs : int

Number of #client-list inform messages sent.

Examples

?client-list
#client-list 127.0.0.1:53600
!client-list ok 1

request_halt(req, msg)
Halt the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the halt succeeded.

Examples

?halt
!halt ok

request_help(req, msg)
Return help on the available requests.

Return a description of the available requests using a sequence of #help informs.

Parameters request : str, optional

The name of the request to return help for (the default is to return help for all requests).

Informs request : str

The name of a request.

description : str

Documentation for the named request.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

informs : int

Number of #help inform messages sent.

Examples

168 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

?help
#help halt ...description...
#help help ...description...
...
!help ok 5

?help halt
#help halt ...description...
!help ok 1

request_log_level(req, msg)
Query or set the current logging level.

Parameters level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}, optional

Name of the logging level to set the device server to (the default is to leave the log level
unchanged).

Returns success : {‘ok’, ‘fail’}

Whether the request succeeded.

level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}

The log level after processing the request.

Examples

?log-level
!log-level ok warn

?log-level info
!log-level ok info

request_request_timeout_hint(req, msg)
Return timeout hints for requests

KATCP requests should generally take less than 5s to complete, but some requests are unavoidably slow.
This results in spurious client timeout errors. This request provides timeout hints that clients can use to
select suitable request timeouts.

Parameters request : str, optional

The name of the request to return a timeout hint for (the default is to return hints for all
requests that have timeout hints). Returns one inform per request. Must be an existing
request if specified.

Informs request : str

The name of the request.

suggested_timeout : float

Suggested request timeout in seconds for the request. If suggested_timeout is zero (0),
no timeout hint is available.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

informs : int

1.9. KATCP Server API (server) 169



KATCP Documentation, Release 0.0+unknown.202102020856

Number of #request-timeout-hint inform messages sent.

Notes

?request-timeout-hint without a parameter will only return informs for requests that have specific timeout
hints, so it will most probably be a subset of all the requests, or even no informs at all.

Examples

?request-timeout-hint
#request-timeout-hint halt 5
#request-timeout-hint very-slow-request 500
...
!request-timeout-hint ok 5

?request-timeout-hint moderately-slow-request
#request-timeout-hint moderately-slow-request 20
!request-timeout-hint ok 1

request_restart(req, msg)
Restart the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the restart succeeded.

Examples

?restart
!restart ok

request_sensor_list(req, msg)
Request the list of sensors.

The list of sensors is sent as a sequence of #sensor-list informs.

Parameters name : str, optional

Name of the sensor to list (the default is to list all sensors). If name starts and ends with
‘/’ it is treated as a regular expression and all sensors whose names contain the regular
expression are returned.

Informs name : str

The name of the sensor being described.

description : str

Description of the named sensor.

units : str

Units for the value of the named sensor.

type : str

Type of the named sensor.

params : list of str, optional

170 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Additional sensor parameters (type dependent). For integer and float sensors the addi-
tional parameters are the minimum and maximum sensor value. For discrete sensors the
additional parameters are the allowed values. For all other types no additional parame-
ters are sent.

Returns success : {‘ok’, ‘fail’}

Whether sending the sensor list succeeded.

informs : int

Number of #sensor-list inform messages sent.

Examples

?sensor-list
#sensor-list psu.voltage PSU\_voltage. V float 0.0 5.0
#sensor-list cpu.status CPU\_status. \@ discrete on off error
...
!sensor-list ok 5

?sensor-list cpu.power.on
#sensor-list cpu.power.on Whether\_CPU\_hase\_power. \@ boolean
!sensor-list ok 1

?sensor-list /voltage/
#sensor-list psu.voltage PSU\_voltage. V float 0.0 5.0
#sensor-list cpu.voltage CPU\_voltage. V float 0.0 3.0
!sensor-list ok 2

request_sensor_sampling(req, msg)
Configure or query the way a sensor is sampled.

Sampled values are reported asynchronously using the #sensor-status message.

Parameters names : str

One or more names of sensors whose sampling strategy will be queried or configured.
If specifying multiple sensors, these must be provided as a comma-separated list. A
query can only be done on a single sensor. However, configuration can be done on
many sensors with a single request, as long as they all use the same strategy. Note:
prior to KATCP v5.1 only a single sensor could be configured. Multiple sensors are
only allowed if the device server sets the protocol version to KATCP v5.1 or higher and
enables the BULK_SET_SENSOR_SAMPLING flag in its PROTOCOL_INFO class
attribute.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘differential-rate’,

‘period’, ‘event-rate’}, optional

Type of strategy to use to report the sensor value. The differential strategy types may
only be used with integer or float sensors. If this parameter is supplied, it sets the new
strategy.

params : list of str, optional

Additional strategy parameters (dependent on the strategy type). For the differential
strategy, the parameter is an integer or float giving the amount by which the sensor value
may change before an updated value is sent. For the period strategy, the parameter is the
sampling period in float seconds. The event strategy has no parameters. Note that this

1.9. KATCP Server API (server) 171



KATCP Documentation, Release 0.0+unknown.202102020856

has changed from KATCPv4. For the event-rate strategy, a minimum period between
updates and a maximum period between updates (both in float seconds) must be given.
If the event occurs more than once within the minimum period, only one update will
occur. Whether or not the event occurs, the sensor value will be updated at least once
per maximum period. For the differential-rate strategy there are 3 parameters. The first
is the same as the differential strategy parameter. The second and third are the minimum
and maximum periods, respectively, as with the event-rate strategy.

Informs timestamp : float

Timestamp of the sensor reading in seconds since the Unix epoch, or milliseconds for
katcp versions <= 4.

count : {1}

Number of sensors described in this #sensor-status inform. Will always be one. It exists
to keep this inform compatible with #sensor-value.

name : str

Name of the sensor whose value is being reported.

value : object

Value of the named sensor. Type depends on the type of the sensor.

Returns success : {‘ok’, ‘fail’}

Whether the sensor-sampling request succeeded.

names : str

Name(s) of the sensor queried or configured. If multiple sensors, this will be a comma-
separated list.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘differential-rate’,

‘period’, ‘event-rate’}.

Name of the new or current sampling strategy for the sensor(s).

params : list of str

Additional strategy parameters (see description under Parameters).

Examples :

——– :

:: :

?sensor-sampling cpu.power.on !sensor-sampling ok cpu.power.on none

?sensor-sampling cpu.power.on period 0.5 #sensor-status 1244631611.415231 1
cpu.power.on nominal 1 !sensor-sampling ok cpu.power.on period 0.5

if BULK_SET_SENSOR_SAMPLING is enabled then:

?sensor-sampling cpu.power.on,fan.speed !sensor-sampling fail Can-
not_query_multiple_sensors

?sensor-sampling cpu.power.on,fan.speed period 0.5 #sensor-status
1244631611.415231 1 cpu.power.on nominal 1 #sensor-status 1244631611.415200 1
fan.speed nominal 10.0 !sensor-sampling ok cpu.power.on,fan.speed period 0.5

request_sensor_sampling_clear(req, msg)
Set all sampling strategies for this client to none.

172 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Returns success : {‘ok’, ‘fail’}

Whether sending the list of devices succeeded.

Examples

?sensor-sampling-clear !sensor-sampling-clear ok

request_sensor_value(req, msg)
Request the value of a sensor or sensors.

A list of sensor values as a sequence of #sensor-value informs.

Parameters name : str, optional

Name of the sensor to poll (the default is to send values for all sensors). If name starts
and ends with ‘/’ it is treated as a regular expression and all sensors whose names contain
the regular expression are returned.

Informs timestamp : float

Timestamp of the sensor reading in seconds since the Unix epoch, or milliseconds for
katcp versions <= 4.

count : {1}

Number of sensors described in this #sensor-value inform. Will always be one. It exists
to keep this inform compatible with #sensor-status.

name : str

Name of the sensor whose value is being reported.

value : object

Value of the named sensor. Type depends on the type of the sensor.

Returns success : {‘ok’, ‘fail’}

Whether sending the list of values succeeded.

informs : int

Number of #sensor-value inform messages sent.

Examples

?sensor-value
#sensor-value 1244631611.415231 1 psu.voltage nominal 4.5
#sensor-value 1244631611.415200 1 cpu.status nominal off
...
!sensor-value ok 5

?sensor-value cpu.power.on
#sensor-value 1244631611.415231 1 cpu.power.on nominal 0
!sensor-value ok 1

request_version_list(req, msg)
Request the list of versions of roles and subcomponents.

Informs name : str

1.9. KATCP Server API (server) 173



KATCP Documentation, Release 0.0+unknown.202102020856

Name of the role or component.

version : str

A string identifying the version of the component. Individual components may define
the structure of this argument as they choose. In the absence of other information clients
should treat it as an opaque string.

build_state_or_serial_number : str

A unique identifier for a particular instance of a component. This should change when-
ever the component is replaced or updated.

Returns success : {‘ok’, ‘fail’}

Whether sending the version list succeeded.

informs : int

Number of #version-list inform messages sent.

Examples

?version-list
#version-list katcp-protocol 5.0-MI
#version-list katcp-library katcp-python-0.4 katcp-python-0.4.1-py2
#version-list katcp-device foodevice-1.0 foodevice-1.0.0rc1
!version-list ok 3

request_watchdog(req, msg)
Check that the server is still alive.

Returns success : {‘ok’}

Examples

?watchdog
!watchdog ok

set_restart_queue(restart_queue)
Set the restart queue.

When the device server should be restarted, it will be added to the queue.

Parameters restart_queue : Queue.Queue object

The queue to add the device server to when it should be restarted.

setup_sensors()
Populate the dictionary of sensors.

Unimplemented by default – subclasses should add their sensors here or pass if there are no sensors.

Examples

174 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

>>> class MyDevice(DeviceServer):
... def setup_sensors(self):
... self.add_sensor(Sensor(...))
... self.add_sensor(Sensor(...))
...

version()
Return a version string of the form type-major.minor.

class katcp.server.DeviceServerBase(host, port, tb_limit=20, logger=<logging.Logger ob-
ject>)

Bases: future.types.newobject.newobject

Base class for device servers.

Subclasses should add .request_* methods for dealing with request messages. These methods each take the client
request connection and msg objects as arguments and should return the reply message or raise an exception as a
result.

Subclasses can also add .inform_* and reply_* methods to handle those types of messages.

Should a subclass need to generate inform messages it should do so using either the .inform() or .mass_inform()
methods.

Finally, this class should probably not be subclassed directly but rather via subclassing DeviceServer itself which
implements common .request_* methods.

Parameters host : str

Host to listen on.

port : int

Port to listen on.

tb_limit : int, optional

Maximum number of stack frames to send in error tracebacks.

logger : logging.Logger object, optional

Logger to log messages to.

Methods

DeviceServerBase.
create_exception_reply_and_log(. . . )
DeviceServerBase.
create_log_inform(. . . [, . . . ])

Create a katcp logging inform message.

DeviceServerBase.
handle_inform(connection, msg)

Dispatch an inform message to the appropriate
method.

DeviceServerBase.
handle_message(client_conn, msg)

Handle messages of all types from clients.

DeviceServerBase.
handle_reply(connection, msg)

Dispatch a reply message to the appropriate method.

DeviceServerBase.
handle_request(connection, msg)

Dispatch a request message to the appropriate
method.

Continued on next page

1.9. KATCP Server API (server) 175



KATCP Documentation, Release 0.0+unknown.202102020856

Table 75 – continued from previous page
DeviceServerBase.inform(connection,
msg)

Send an inform message to a particular client.

DeviceServerBase.join([timeout]) Rejoin the server thread.
DeviceServerBase.mass_inform(msg) Send an inform message to all clients.
DeviceServerBase.next()
DeviceServerBase.
on_client_connect(**kwargs)

Called after client connection is established.

DeviceServerBase.
on_client_disconnect(**kwargs)

Called before a client connection is closed.

DeviceServerBase.
on_message(client_conn, msg)

Dummy implementation of on_message required by
KATCPServer.

DeviceServerBase.reply(connection, reply,
. . . )

Send an asynchronous reply to an earlier request.

DeviceServerBase.
reply_inform(connection, . . . )

Send an inform as part of the reply to an earlier re-
quest.

DeviceServerBase.running() Whether the server is running.
DeviceServerBase.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
DeviceServerBase.
set_concurrency_options([. . . ])

Set concurrency options for this device server.

DeviceServerBase.set_ioloop([ioloop]) Set the tornado IOLoop to use.
DeviceServerBase.start([timeout]) Start the server in a new thread.
DeviceServerBase.stop([timeout]) Stop a running server (from another thread).
DeviceServerBase.
sync_with_ioloop([timeout])

Block for ioloop to complete a loop if called from
another thread.

DeviceServerBase.
wait_running([timeout])

Wait until the server is running

create_log_inform(level_name, msg, name, timestamp=None)
Create a katcp logging inform message.

Usually this will be called from inside a DeviceLogger object, but it is also used by the methods in this
class when errors need to be reported to the client.

handle_inform(connection, msg)
Dispatch an inform message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The inform message to process.

handle_message(client_conn, msg)
Handle messages of all types from clients.

Parameters client_conn : ClientConnection object

The client connection the message was from.

msg : Message object

The message to process.

handle_reply(connection, msg)
Dispatch a reply message to the appropriate method.

176 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The reply message to process.

handle_request(connection, msg)
Dispatch a request message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The request message to process.

Returns done_future : Future or None

Returns Future for async request handlers that will resolve when done, or None for sync
request handlers once they have completed.

inform(connection, msg)
Send an inform message to a particular client.

Should only be used for asynchronous informs. Informs that are part of the response to a request should
use reply_inform() so that the message identifier from the original request can be attached to the
inform.

Parameters connection : ClientConnection object

The client to send the message to.

msg : Message object

The inform message to send.

join(timeout=None)
Rejoin the server thread.

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

mass_inform(msg)
Send an inform message to all clients.

Parameters msg : Message object

The inform message to send.

on_client_connect(**kwargs)
Called after client connection is established.

Subclasses should override if they wish to send clients message or perform house-keeping at this point.

Parameters conn : ClientConnection object

The client connection that has been successfully established.

Returns Future that resolves when the device is ready to accept messages. :

on_client_disconnect(**kwargs)
Called before a client connection is closed.

1.9. KATCP Server API (server) 177



KATCP Documentation, Release 0.0+unknown.202102020856

Subclasses should override if they wish to send clients message or perform house-keeping at this point.
The server cannot guarantee this will be called (for example, the client might drop the connection). The
message parameter contains the reason for the disconnection.

Parameters conn : ClientConnection object

Client connection being disconnected.

msg : str

Reason client is being disconnected.

connection_valid : boolean

True if connection is still open for sending, False otherwise.

Returns Future that resolves when the client connection can be closed. :

on_message(client_conn, msg)
Dummy implementation of on_message required by KATCPServer.

Will be replaced by a handler with the appropriate concurrency semantics when set_concurrency_options
is called (defaults are set in __init__()).

reply(connection, reply, orig_req)
Send an asynchronous reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the reply to.

reply : Message object

The reply message to send.

orig_req : Message object

The request message being replied to. The reply message’s id is overridden with the id
from orig_req before the reply is sent.

reply_inform(connection, inform, orig_req)
Send an inform as part of the reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the inform to.

inform : Message object

The inform message to send.

orig_req : Message object

The request message being replied to. The inform message’s id is overridden with the
id from orig_req before the inform is sent.

running()
Whether the server is running.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_concurrency_options(thread_safe=True, handler_thread=True)
Set concurrency options for this device server. Must be called before start().

178 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Parameters thread_safe : bool

If True, make the server public methods thread safe. Incurs performance overhead.

handler_thread : bool

Can only be set if thread_safe is True. Handle all requests (even from different clients)
in a separate, single, request-handling thread. Blocking request handlers will prevent
the server from handling new requests from any client, but sensor strategies should still
function. This more or less mimics the behaviour of a server in library versions before
0.6.0.

set_ioloop(ioloop=None)
Set the tornado IOLoop to use.

Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never
called the IOLoop is started in a new thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called.

start(timeout=None)
Start the server in a new thread.

Parameters timeout : float or None, optional

Time in seconds to wait for server thread to start.

stop(timeout=1.0)
Stop a running server (from another thread).

Parameters timeout : float, optional

Seconds to wait for server to have started.

Returns stopped : thread-safe Future

Resolves when the server is stopped

sync_with_ioloop(timeout=None)
Block for ioloop to complete a loop if called from another thread.

Returns a future if called from inside the ioloop.

Raises concurrent.futures.TimeoutError if timed out while blocking.

wait_running(timeout=None)
Wait until the server is running

class katcp.server.KATCPServer(device, host, port, tb_limit=20, logger=<logging.Logger ob-
ject>)

Bases: future.types.newobject.newobject

Tornado IO backend for a KATCP Device.

Listens for connections on a server socket, reads KATCP messages off the wire and passes them on to a
DeviceServer-like class.

All class CONSTANT attributes can be changed until start() is called.

1.9. KATCP Server API (server) 179



KATCP Documentation, Release 0.0+unknown.202102020856

Methods

KATCPServer.call_from_thread(fn) Allow thread-safe calls to ioloop functions.
KATCPServer.client_connection_factoryFactory that produces a ClientConnection compati-

ble instance.
KATCPServer.flush_on_close(stream) Flush tornado iostream write buffer and prevent fur-

ther writes.
KATCPServer.get_address(stream) Text representation of the network address of a con-

nection stream.
KATCPServer.in_ioloop_thread() Return True if called in the IOLoop thread of this

server.
KATCPServer.join([timeout]) Rejoin the server thread.
KATCPServer.mass_send_message(msg) Send a message to all connected clients.
KATCPServer.mass_send_message_from_thread(msg)Thread-safe version of send_message() returning a

Future instance.
KATCPServer.next()
KATCPServer.running() Whether the handler thread is running.
KATCPServer.send_message(stream, msg) Send an arbitrary message to a particular client.
KATCPServer.send_message_from_thread(stream,
msg)

Thread-safe version of send_message() returning a
Future instance.

KATCPServer.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to
True / False

KATCPServer.set_ioloop([ioloop]) Set the tornado IOLoop to use.
KATCPServer.start([timeout]) Install the server on its IOLoop, optionally starting

the IOLoop.
KATCPServer.stop([timeout]) Stop a running server (from another thread).
KATCPServer.wait_running([timeout]) Wait until the handler thread is running.

DISCONNECT_TIMEOUT = 1
How long to wait for the device on_client_disconnect() to complete.

Note that this will only work if the device on_client_disconnect() method is non-blocking (i.e. returns a
future immediately). Otherwise the ioloop will be blocked and unable to apply the timeout.

MAX_MSG_SIZE = 2097152
Maximum message size that can be received in bytes.

If more than MAX_MSG_SIZE bytes are read from the client without encountering a message terminator
(i.e. newline), the connection is closed.

MAX_WRITE_BUFFER_SIZE = 4194304
Maximum outstanding bytes to be buffered by the server process.

If more than MAX_WRITE_BUFFER_SIZE bytes are outstanding, the client connection is closed. Note
that the OS also buffers socket writes, so more than MAX_WRITE_BUFFER_SIZE bytes may be untrans-
mitted in total.

bind_address
The (host, port) where the server is listening for connections.

call_from_thread(fn)
Allow thread-safe calls to ioloop functions.

Uses add_callback if not in the IOLoop thread, otherwise calls directly. Returns an already resolved tor-
nado.concurrent.Future if in ioloop, otherwise a concurrent.Future. Logs unhandled exceptions. Resolves
with an exception if one occurred.

180 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

client_connection_factory
Factory that produces a ClientConnection compatible instance.

signature: client_connection_factory(server, conn_id)

Should be set before calling start().

Methods

ClientConnection.disconnect(reason) Disconnect this client connection for specified
reason

ClientConnection.inform(msg) Send an inform message to a particular client.
ClientConnection.mass_inform(msg) Send an inform message to all clients.
ClientConnection.next()
ClientConnection.
on_client_disconnect_was_called()

Prevent multiple calls to on_client_disconnect
handler.

ClientConnection.reply(reply, orig_req) Send an asynchronous reply to an earlier request.
ClientConnection.
reply_inform(inform, orig_req)

Send an inform as part of the reply to an earlier
request.

alias of ClientConnection

flush_on_close(stream)
Flush tornado iostream write buffer and prevent further writes.

Returns a future that resolves when the stream is flushed.

get_address(stream)
Text representation of the network address of a connection stream.

Notes

This method is thread-safe

in_ioloop_thread()
Return True if called in the IOLoop thread of this server.

ioloop = None
The Tornado IOloop to use, set by self.set_ioloop()

join(timeout=None)
Rejoin the server thread.

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

Notes

If the ioloop is not managed, this function will block until the server port is closed, meaning a new server
can be started on the same port.

mass_send_message(msg)
Send a message to all connected clients.

1.9. KATCP Server API (server) 181



KATCP Documentation, Release 0.0+unknown.202102020856

Notes

This method can only be called in the IOLoop thread.

mass_send_message_from_thread(msg)
Thread-safe version of send_message() returning a Future instance.

See return value and notes for send_message_from_thread().

running()
Whether the handler thread is running.

send_message(stream, msg)
Send an arbitrary message to a particular client.

Parameters stream : tornado.iostream.IOStream object

The stream to send the message to.

msg : Message object

The message to send.

Notes

This method can only be called in the IOLoop thread.

Failed sends disconnect the client connection and calls the device on_client_disconnect() method. They do
not raise exceptions, but they are logged. Sends also fail if more than self.MAX_WRITE_BUFFER_SIZE
bytes are queued for sending, implying that client is falling behind.

send_message_from_thread(stream, msg)
Thread-safe version of send_message() returning a Future instance.

Returns A Future that will resolve without raising an exception as soon as :

the call to send_message() completes. This does not guarantee that the :

message has been delivered yet. If the call to send_message() failed, :

the exception will be logged, and the future will resolve with the :

exception raised. Since a failed call to send_message() will result :

in the connection being closed, no real error handling apart from :

logging will be possible. :

Notes

This method is thread-safe. If called from within the ioloop, send_message is called directly and a resolved
tornado.concurrent.Future is returned, otherwise a callback is submitted to the ioloop that will resolve a
thread-safe concurrent.futures.Future instance.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

182 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

set_ioloop(ioloop=None)
Set the tornado IOLoop to use.

Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never
called the IOLoop is started in a new thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called.

start(timeout=None)
Install the server on its IOLoop, optionally starting the IOLoop.

Parameters timeout : float or None, optional

Time in seconds to wait for server thread to start.

stop(timeout=1.0)
Stop a running server (from another thread).

Parameters timeout : float or None, optional

Seconds to wait for server to have started.

Returns stopped : thread-safe Future

Resolves when the server is stopped

wait_running(timeout=None)
Wait until the handler thread is running.

class katcp.server.MessageHandlerThread(handler, log_inform_formatter, log-
ger=<logging.Logger object>)

Bases: future.types.newobject.newobject

Provides backwards compatibility for server expecting its own thread.

Methods

MessageHandlerThread.isAlive()
MessageHandlerThread.join([timeout]) Rejoin the handler thread.
MessageHandlerThread.next()
MessageHandlerThread.
on_message(client_conn, msg)

Handle message.

MessageHandlerThread.run()
MessageHandlerThread.running() Whether the handler thread is running.
MessageHandlerThread.
set_ioloop(ioloop)
MessageHandlerThread.start([timeout])
MessageHandlerThread.stop([timeout]) Stop the handler thread (from another thread).
MessageHandlerThread.
wait_running([timeout])

Wait until the handler thread is running.

join(timeout=None)
Rejoin the handler thread.

Parameters timeout : float or None, optional

1.9. KATCP Server API (server) 183



KATCP Documentation, Release 0.0+unknown.202102020856

Time in seconds to wait for the thread to finish.

on_message(client_conn, msg)
Handle message.

Returns ready : Future

A future that will resolve once we’re ready, else None.

Notes

on_message should not be called again until ready has resolved.

running()
Whether the handler thread is running.

stop(timeout=1.0)
Stop the handler thread (from another thread).

Parameters timeout : float, optional

Seconds to wait for server to have started.

wait_running(timeout=None)
Wait until the handler thread is running.

class katcp.server.ThreadsafeClientConnection(server, conn_id)
Bases: katcp.server.ClientConnection

Make ClientConnection compatible with messages sent from other threads.

Methods

ThreadsafeClientConnection.
disconnect(reason)

Disconnect this client connection for specified rea-
son

ThreadsafeClientConnection.
inform(msg)

Send an inform message to a particular client.

ThreadsafeClientConnection.
mass_inform(msg)

Send an inform message to all clients.

ThreadsafeClientConnection.next()
ThreadsafeClientConnection.
on_client_disconnect_was_called()

Prevent multiple calls to on_client_disconnect han-
dler.

ThreadsafeClientConnection.
reply(reply, orig_req)

Send an asynchronous reply to an earlier request.

ThreadsafeClientConnection.
reply_inform(. . . )

Send an inform as part of the reply to an earlier re-
quest.

katcp.server.construct_name_filter(pattern)
Return a function for filtering sensor names based on a pattern.

Parameters pattern : None or str

If None, the returned function matches all names. If pattern starts and ends with ‘/’ the
text between the slashes is used as a regular expression to search the names. Otherwise
the pattern must match the name of the sensor exactly.

Returns exact : bool

184 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Return True if pattern is expected to match exactly. Used to determine whether having
no matching sensors constitutes an error.

filter_func : f(str) -> bool

Function for determining whether a name matches the pattern.

katcp.server.return_future(fn)
Decorator that turns a synchronous function into one returning a future.

This should only be applied to non-blocking functions. Will do set_result() with the return value, or
set_exc_info() if an exception is raised.

1.10 Tutorial

1.10.1 Installing the Python Katcp Library

Stable release

To install katcp, run this command in your terminal:

$ pip install katcp

This is the preferred method to install katcp, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

Alternatively,

$ easy_install katcp

Note: This requires the setuptools Python package to be installed.

From sources

The sources for katcp can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone https://github.com/ska-sa/katcp-python/

Or download the tarball:

$ curl -OJL https://github.com/ska-sa/katcp-python/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

1.10. Tutorial 185

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/ska-sa/katcp-python
https://github.com/ska-sa/katcp-python/tarball/master


KATCP Documentation, Release 0.0+unknown.202102020856

1.10.2 Usage

Using the Blocking Client

The blocking client is the most straight-forward way of querying a KATCP device. It is used as follows:

from katcp import BlockingClient, Message

device_host = "www.example.com"
device_port = 5000

client = BlockingClient(device_host, device_port)
client.start()
client.wait_protocol() # Optional

reply, informs = client.blocking_request(
Message.request("help"))

print reply
for msg in informs:

print msg

client.stop()
client.join()

After creating the BlockingClient instance, the start() method is called to launch the client thread. The
wait_protocol() method waits until katcp version information has been received from the server, allowing the
KATCP version spoken by the server to be known; server protocol information is stores in client.protocol_flags. Once
you have finished with the client, stop() can be called to request that the thread shutdown. Finally, join() is used
to wait for the client thread to finish.

While the client is active the blocking_request() method can be used to send messages to the KATCP server
and wait for replies. If a reply is not received within the allowed time, a RuntimeError is raised.

If a reply is received blocking_request() returns two values. The first is the Message containing the reply.
The second is a list of messages containing any KATCP informs associated with the reply.

Using the Callback Client

For situations where one wants to communicate with a server but doesn’t want to wait for a reply, the
CallbackClient is provided:

from katcp import CallbackClient, Message

device_host = "www.example.com"
device_port = 5000

def reply_cb(msg):
print "Reply:", msg

def inform_cb(msg):
print "Inform:", msg

client = CallbackClient(device_host, device_port)
client.start()

(continues on next page)

186 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

(continued from previous page)

reply, informs = client.callback_request(
Message.request("help"),
reply_cb=reply_cb,
inform_cb=inform_cb,

)

client.stop()
client.join()

Note that the reply_cb() and inform_cb() callback functions are both called inside the client’s event-loop
thread so should not perform any operations that block. If needed, pass the data out from the callback function to
another thread using a Queue.Queue or similar structure.

Writing your own Client

If neither the BlockingClient nor the CallbackClient provide the functionality you need then you can sub-
class DeviceClient which is the base class from which both are derived.

DeviceClient has two methods for sending messages:

• request() for sending request Messages

• send_message for sending arbitrary Messages

Internally request calls send_message to pass messages to the server.

Note: The send_message() method does not return an error code or raise an exception if sending the mes-
sage fails. Since the underlying protocol is entirely asynchronous, the only means to check that a request was
successful is receive a reply message. One can check that the client is connected before sending a message using
is_connected().

When the DeviceClient thread receives a completed message, handle_message() is called. The
default handle_message() implementation calls one of handle_reply(), handle_inform() or
handle_request() depending on the type of message received.

Note: Sending requests to clients is discouraged. The handle_request() is provided mostly for completeness
and to deal with unforseen circumstances.

Each of handle_reply(), handle_inform() and handle_request() dispatches messages to methods
based on the message name. For example, a reply message named foo will be dispatched to reply_foo(). Sim-
ilarly an inform message named bar will be dispatched to inform_bar(). If no corresponding method is found
then one of unhandled_reply(), unhandled_inform() or unhandled_request() is called.

Your own client may hook into this dispatch tree at any point by implementing or overriding the appropriate methods.

An example of a simple client that only handles replies to help messages is presented below:

from katcp import DeviceClient, Message
import time

device_host = "www.example.com"
device_port = 5000

class MyClient(DeviceClient):
(continues on next page)

1.10. Tutorial 187



KATCP Documentation, Release 0.0+unknown.202102020856

(continued from previous page)

def reply_help(self, msg):
"""Print out help replies."""
print msg.name, msg.arguments

def inform_help(self, msg):
"""Print out help inform messages."""
meth, desc = msg.arguments[:2]
print "---------", meth, "---------"
print
print desc
print "----------------------------"

def unhandled_reply(self, msg):
"""Print out unhandled replies."""
print "Unhandled reply", msg.name

def unhandled_inform(self, msg):
"Print out unhandled informs."""
print "Unhandled inform", msg.name

client = MyClient(device_host, device_port)
client.start()

client.request(Message.request("help"))
client.request(Message.request("watchdog"))

time.sleep(0.5)

client.stop()
client.join()

Client handler functions can use the unpack_message() decorator from kattypes module to unpack messages into
function arguments in the same way the request() decorator is used in the server example below, except that the
req parameter is omitted.

Using the high-level client API

The high level client API inspects a KATCP device server and presents requests as method calls and sensors as objects.

A high level client for the example server presented in the following section:

import tornado

from tornado.ioloop import IOLoop
from katcp import resource_client

ioloop = IOLoop.current()

client = resource_client.KATCPClientResource(dict(
name='demo-client',
address=('localhost', 5000),
controlled=True))

@tornado.gen.coroutine
(continues on next page)

188 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

(continued from previous page)

def demo():
# Wait until the client has finished inspecting the device
yield client.until_synced()
help_response = yield client.req.help()
print "device help:\n ", help_response
add_response = yield client.req.add(3, 6)
print "3 + 6 response:\n", add_response
# By not yielding we are not waiting for the response
pick_response_future = client.req.pick_fruit()
# Instead we wait for the fruit.result sensor status to change to
# nominal. Before we can wait on a sensor, a strategy must be set:
client.sensor.fruit_result.set_strategy('event')
# If the condition does not occur within the timeout (default 5s), we will
# get a TimeoutException
yield client.sensor.fruit_result.wait(

lambda reading: reading.status == 'nominal')
fruit = yield client.sensor.fruit_result.get_value()
print 'Fruit picked: ', fruit
# And see how the ?pick-fruit request responded by yielding on its future
pick_response = yield pick_response_future
print 'pick response: \n', pick_response
# Finally stop the ioloop so that the program exits
ioloop.stop()

# Note, katcp.resource_client.ThreadSafeKATCPClientResourceWrapper can be used to
# turn the client into a 'blocking' client for use in e.g. ipython. It will turn
# all functions that return tornado futures into blocking calls, and will bounce
# all method calls through the ioloop. In this case the ioloop must be started
# in a separate thread. katcp.ioloop_manager.IOLoopManager can be used to manage
# the ioloop thread.

ioloop.add_callback(client.start)
ioloop.add_callback(demo)
ioloop.start()

Writing your own Server

Creating a server requires sub-classing DeviceServer. This class already provides all the requests and inform
messages required by the KATCP protocol. However, its implementation requires a little assistance from the subclass
in order to function.

A very simple server example looks like:

import threading
import time
import random

from katcp import DeviceServer, Sensor, ProtocolFlags, AsyncReply
from katcp.kattypes import (Str, Float, Timestamp, Discrete,

request, return_reply)

server_host = ""
server_port = 5000

class MyServer(DeviceServer):
(continues on next page)

1.10. Tutorial 189



KATCP Documentation, Release 0.0+unknown.202102020856

(continued from previous page)

VERSION_INFO = ("example-api", 1, 0)
BUILD_INFO = ("example-implementation", 0, 1, "")

# Optionally set the KATCP protocol version and features. Defaults to
# the latest implemented version of KATCP, with all supported optional
# features
PROTOCOL_INFO = ProtocolFlags(5, 0, set([

ProtocolFlags.MULTI_CLIENT,
ProtocolFlags.MESSAGE_IDS,

]))

FRUIT = [
"apple", "banana", "pear", "kiwi",

]

def setup_sensors(self):
"""Setup some server sensors."""
self._add_result = Sensor.float("add.result",

"Last ?add result.", "", [-10000, 10000])

self._time_result = Sensor.timestamp("time.result",
"Last ?time result.", "")

self._eval_result = Sensor.string("eval.result",
"Last ?eval result.", "")

self._fruit_result = Sensor.discrete("fruit.result",
"Last ?pick-fruit result.", "", self.FRUIT)

self.add_sensor(self._add_result)
self.add_sensor(self._time_result)
self.add_sensor(self._eval_result)
self.add_sensor(self._fruit_result)

@request(Float(), Float())
@return_reply(Float())
def request_add(self, req, x, y):

"""Add two numbers"""
r = x + y
self._add_result.set_value(r)
return ("ok", r)

@request()
@return_reply(Timestamp())
def request_time(self, req):

"""Return the current time in seconds since the Unix Epoch."""
r = time.time()
self._time_result.set_value(r)
return ("ok", r)

@request(Str())
@return_reply(Str())
def request_eval(self, req, expression):

"""Evaluate a Python expression."""
r = str(eval(expression))
self._eval_result.set_value(r)

(continues on next page)

190 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

(continued from previous page)

return ("ok", r)

@request()
@return_reply(Discrete(FRUIT))
def request_pick_fruit(self, req):

"""Pick a random fruit."""
r = random.choice(self.FRUIT + [None])
if r is None:

return ("fail", "No fruit.")
delay = random.randrange(1,5)
req.inform("Picking will take %d seconds" % delay)

def pick_handler():
self._fruit_result.set_value(r)
req.reply("ok", r)

self.ioloop.add_callback(
self.ioloop.call_later, delay, pick_handler)

raise AsyncReply

def request_raw_reverse(self, req, msg):
"""
A raw request handler to demonstrate the calling convention if
@request decorator are not used. Reverses the message arguments.
"""
# msg is a katcp.Message.request object
reversed_args = msg.arguments[::-1]
# req.make_reply() makes a katcp.Message.reply using the correct request
# name and message ID
return req.make_reply('ok', *reversed_args)

if __name__ == "__main__":

server = MyServer(server_host, server_port)
server.start()
server.join()

Notice that MyServer has three special class attributes VERSION_INFO, BUILD_INFO and PROTOCOL_INFO.
VERSION_INFO gives the version of the server API. Many implementations might use the same VERSION_INFO.
BUILD_INFO gives the version of the software that provides the device. Each device implementation should have
a unique BUILD_INFO. PROTOCOL_INFO is an instance of ProtocolFlags that describes the KATCP dialect
spoken by the server. If not specified, it defaults to the latest implemented version of KATCP, with all supported
optional features. Using a version different from the default may change server behaviour; furthermore version info
may need to be passed to the @request and @return_reply decorators.

The setup_sensors() method registers Sensor objects with the device server. The base class uses this informa-
tion to implement the ?sensor-list, ?sensor-value and ?sensor-sampling requests. add_sensor()
should be called once for each sensor the device should contain. You may create the sensor objects inside
setup_sensors() (as done in the example) or elsewhere if you wish.

Request handlers are added to the server by creating methods whose names start with “request_”. These methods take
two arguments – the client-request object (abstracts the client socket and the request context) that the request came
from, and the request message. Notice that the message argument is missing from the methods in the example. This is
a result of the request() decorator that has been applied to the methods.

1.10. Tutorial 191



KATCP Documentation, Release 0.0+unknown.202102020856

The request() decorator takes a list of KatcpType objects describing the request arguments. Once the arguments
have been checked they are passed in to the underlying request method as additional parameters instead of the request
message.

The return_reply decorator performs a similar operation for replies. Once the request method returns a tuple (or
list) of reply arguments, the decorator checks the values of the arguments and constructs a suitable reply message.

Use of the request() and return_reply() decorators is encouraged but entirely optional.

Message dispatch is handled in much the same way as described in the client example, with the exception that there
are no unhandled_request(), unhandled_reply() or unhandled_request() methods. Instead, the
server will log an exception.

Writing your own Async Server

To write a server in the typical tornado async style, modify the example above by adding the following imports

import signal
import tornado

from katcp import AsyncDeviceServer

Also replace class MyServer(DeviceServer) with class MyServer(AsyncDeviceServer) and replace the if __name__ ==
“__main__”: block with

@tornado.gen.coroutine
def on_shutdown(ioloop, server):

print('Shutting down')
yield server.stop()
ioloop.stop()

if __name__ == "__main__":
ioloop = tornado.ioloop.IOLoop.current()
server = MyServer(server_host, server_port)
# Hook up to SIGINT so that ctrl-C results in a clean shutdown
signal.signal(signal.SIGINT, lambda sig, frame: ioloop.add_callback_from_signal(

on_shutdown, ioloop, server))
ioloop.add_callback(server.start)
ioloop.start()

If multiple servers are started in a single ioloop, on_shutdown() should be modified to call stop() on each server.
This is needed to allow a clean shutdown that adheres to the KATCP specification requirement that a #disconnect
inform is sent when a server shuts down.

Event Loops and Thread Safety

As of version 0.6.0, katcp-python was completely reworked to use Tornado as an event- and network library. A typical
Tornado application would only use a single tornado.ioloop.IOLoop event-loop instance. Logically independent parts
of the application would all share the same ioloop using e.g. coroutines to allow concurrent tasks.

However, to maintain backwards compatibility with the thread-semantics of older versions of this library, it sup-
ports starting a tornado.ioloop.IOLoop instance in a new thread for each client or server. Instantiating the
BlockingClient or CallbackClient client classes or the DeviceServer server class will implement the
backward compatible behaviour by default, while using AsyncClient or AsyncDeviceServer will by default
use tornado.ioloop.IOLoop.current() as the ioloop (can be overridden using their set_ioloop methods), and won’t en-
able thread safety by default (can be overridden using AsyncDeviceServer.set_concurrency_options()
and AsyncClient.enable_thread_safety())

192 Chapter 1. Contents



KATCP Documentation, Release 0.0+unknown.202102020856

Note that any message (request, reply, iform) handling methods should not block. A blocking handler will block the
ioloop, causing all timed operations (e.g. sensor strategies), network io, etc. to block. This is particularly important
when multiple servers/clients share a single ioloop. A good solution for handlers that need to wait on other tasks is
to implement them as Tornado coroutines. A DeviceServer will not accept another request message from a client
connection until the request handler has completed / resolved its future. Multiple outstanding requests can be handled
concurrently by raising the AsyncReply exception in a request handler. It is then the responsibility of the user to
ensure that a reply is eventually sent using the req object.

If DeviceServer.set_concurrency_options() has handler_thread=True (the default for
DeviceServer, AsyncDeviceServer defaults to False), all the requests to a server is serialised and
handled in a separate request handing thread. This allows request handlers to block without preventing sensor strategy
updates, providing backwards-compatible concurrency semantics.

In the case of a purely network-event driven server or client, all user code would execute in the thread context of
the server or client event loop. Therefore all handler functions must be non-blocking to prevent unresponsiveness.
Unhandled exceptions raised by handlers running in the network event-thread are caught and logged; in the case of
servers, an error reply including the traceback is sent over the network interface. Slow operations (such as picking
fruit) may be delegated to another thread (if a threadsafe server is used), a callback (as shown in the request_pick_fruit
handler in the server example) or tornado coroutine.

If a device is linked to processing that occurs independently of network events, one approach would be a model
thread running in the background. The KATCP handler code would then defer requests to the model. The model
must provide a thread-safe interface to the KATCP code. If using an async server (e.g. AsyncDeviceServer
or DeviceServer.set_concurrency_options() called with thread_safe=False), all interaction with the
device server needs to be through the tornado.ioloop.Ioloop.add_callback() method of the server’s
ioloop. The server’s ioloop instance can be accessed through its ioloop attribute. If a threadsafe server (e.g.
DeviceServer with default concurrency options) or client (e.g. CallbackClient) is used, all the public meth-
ods provided by this katcp library for sending !replies or #informs are thread safe.

Updates to Sensor objects using the public setter methods are always thread-safe, provided that the same is true for
all the observers attached to the sensor. The server observers used to implement sampling strategies are threadsafe,
even if an async server is used.

1.10.3 Backwards Compatibility

Server Protocol Backwards Compatibility

A minor modification of the first several lines of the example in Writing your own Server suffices to create a KATCP
v4 server:

from katcp import DeviceServer, Sensor, ProtocolFlags, AsyncReply
from katcp.kattypes import (Str, Float, Timestamp, Discrete,

request, return_reply)

from functools import partial
import threading
import time
import random

server_host = ""
server_port = 5000

# Bind the KATCP major version of the request and return_reply decorators
# to version 4
request = partial(request, major=4)
return_reply = partial(return_reply, major=4)

(continues on next page)

1.10. Tutorial 193



KATCP Documentation, Release 0.0+unknown.202102020856

(continued from previous page)

class MyServer(DeviceServer):

VERSION_INFO = ("example-api", 1, 0)
BUILD_INFO = ("example-implementation", 0, 1, "")

# Optionally set the KATCP protocol version as 4.
PROTOCOL_INFO = ProtocolFlags(4, 0, set([

ProtocolFlags.MULTI_CLIENT,
]))

The rest of the example follows as before.

Client Protocol Backwards Compatibility

The DeviceClient client automatically detects the version of the server if it can, see Server KATCP Version Auto-
detection. For a simple client this means that no changes are required to support different KATCP versions. However,
the semantics of the messages might be different for different protocol versions. Using the unpack_message
decorator with major=4 for reply or inform handlers might help here, although it could use some improvement.

In the case of version auto-detection failing for a given server, preset_protocol_flags can be used to set the
KATCP version before calling the client’s start() method.

1.11 How to Contribute

Everyone is welcome to contribute to the katcp-python project. If you don’t feel comfortable with writing core katcp
we are looking for contributors to documentation or/and tests.

Another option is to report bugs, problems and new ideas as issues. Please be very detailed.

1.11.1 Workflow

A Git workflow with branches for each issue/feature is used.

• There is no special policy regarding commit messages. The first line should be short (50 chars or less) and
contain summary of all changes. Additional detail can be included after a blank line.

• Pull requests are normally made to master branch. An exception is when hotfixing a release - in this case the
merge target would be to the release branch.

1.11.2 reStructuredText and Sphinx

Documentation is written in reStructuredText and built with Sphinx - it’s easy to contribute. It also uses autodoc
importing docstrings from the katcp package.

1.11.3 Source code standard

All code should be PEP8 compatible, with more details and exception described in our guidelines.

194 Chapter 1. Contents

https://github.com/ska-sa/katcp-python/issues/1
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable
https://pypi.python.org/pypi/autodoc
https://www.python.org/dev/peps/pep-0008
https://docs.google.com/document/d/1aZoIyR9tz5rCWr2qJKuMTmKp2IzHlFjrCFrpDDHFypM


KATCP Documentation, Release 0.0+unknown.202102020856

Note: The accepted policy is that your code cannot introduce more issues than it solves!

You can also use other tools for checking PEP8 compliance for your personal use. One good example of such a tool
is Flake8 which combines PEP8 and PyFlakes. There are plugins for various IDEs so that you can use your favourite
tool easily.

1.11.4 Releasing a new version

From time to time a new version is released. Anyone who wishes to see some features of the master branch released
is free to request a new release. One of the maintainers can make the release. The basic steps required are as follows:

Pick a version number

• Semantic version numbering is used: <major>.<minor>.<patch>

• Small changes are done as patch releases. For these the version number should correspond the current
development number since each release process finishes with a version bump.

• Patch release example:

– 0.6.3.devN (current master branch)

– changes to 0.6.3 (the actual release)

– changes to 0.6.4.dev0 (bump the patch version at the end of the release process)

Create an issue in Github

• This is to inform the community that a release is planned.

• Use a checklist similar to the one below:

Task list:
- [ ] Read steps in the How to Contribute docs for making a release
- [ ] Edit the changelog and release notes files
- [ ] Make sure Jenkins tests are still passing on master branch
- [ ] Make sure the documentation is updated for master (readthedocs)
- [ ] Create a release tag on GitHub, from master branch
- [ ] Make sure the documentation is updated for release (readthedocs)
- [ ] Upload the new version to PyPI
- [ ] Fill the release description on GitHub
- [ ] Close this issue

• A check list is this form on github can be ticked off as the work progresses.

Make a branch from master to prepare the release

• Example branch name: user/ajoubert/prepare-v0.6.3.

• Edit the CHANGELOG and release notes (in docs/releasenotes.rst). Include all pull requests
since the previous release.

• Create a pull request to get these changes reviewed before proceeding.

Make sure Jenkins is OK on master branch

1.11. How to Contribute 195

https://www.python.org/dev/peps/pep-0008
https://gitlab.com/pycqa/flake8
https://www.python.org/dev/peps/pep-0008
https://github.com/PyCQA/pyflakes
https://gitlab.com/pycqa/flake8/issues/286


KATCP Documentation, Release 0.0+unknown.202102020856

• All tests on Jenkins must be passing. If not, bad luck - you’ll have to fix it first, and go back a few steps. . .

Make sure the documentation is ok on master

• Log in to https://readthedocs.org.

• Get account permissions for https://readthedocs.org/projects/katcp-python from another maintainer, if nec-
essary.

• Readthedocs should automatically build the docs for each:

– push to master (latest docs)

– new tags (e.g v0.6.3)

• If it doesn’t work automatically, then:

– Trigger manually here: https://readthedocs.org/projects/katcp-python/builds/

Create a release tag on GitHub

• On the Releases page, use “Draft a new release”.

• Tag must match the format of previous tags, e.g. v0.6.3.

• Target must be the master branch.

Make sure the documentation is updated for the newly tagged release

• If the automated build doesn’t work automatically, then:

– Trigger manually here: https://readthedocs.org/projects/katcp-python/builds/

• Set the new version to “active” here: https://readthedocs.org/dashboard/katcp-python/versions/

Upload the new version to PyPI

• Log in to https://pypi.org.

• Get account permissions for katcp from another contributor, if necessary.

• If necessary, pip install twine: https://pypi.org/project/twine/

• Build update from the tagged commit:

– $ git clean -xfd # Warning - remove all non-versioned files and
directories

– $ git fetch

– $ git checkout v0.6.3

– $ python setup.py sdist bdist_wheel

– $ python3 setup.py bdist_wheel

• Upload to testpypi, and make sure all is well:

– $ twine upload -r testpypi dist/katcp-0.6.3.tar.gz

– $ twine upload -r testpypi dist/katcp-0.6.3-py2-none-any.whl

– $ twine upload -r testpypi dist/katcp-0.6.3-py3-none-any.whl

• Test installation (in a virtualenv):

– $ pip install katcp

– $ pip install -U -i https://test.pypi.org/simple/ katcp

• Upload the source tarball and wheel to the real PyPI:

196 Chapter 1. Contents

http://ci.camlab.kat.ac.za/view/Multibranch%20Master/job/katcp-multibranch/job/master/
https://readthedocs.org
https://readthedocs.org/projects/katcp-python
https://readthedocs.org/projects/katcp-python/builds/
https://readthedocs.org/projects/katcp-python/builds/
https://readthedocs.org/dashboard/katcp-python/versions/
https://pypi.org
https://pypi.org/project/twine/
https://test.pypi.org


KATCP Documentation, Release 0.0+unknown.202102020856

– $ twine upload dist/katcp-0.6.3.tar.gz

– $ twine upload dist/katcp-0.6.3-py2-none-any.whl

– $ twine upload dist/katcp-0.6.3-py3-none-any.whl

Fill in the release description on GitHub

• Content must be the same as the details in the changelog.

Close off release issue in Github

• All the items on the check list should be ticked off by now.

• Close the issue.

1.11. How to Contribute 197



KATCP Documentation, Release 0.0+unknown.202102020856

198 Chapter 1. Contents



CHAPTER 2

Indices and tables

• genindex

• modindex

• search

199



KATCP Documentation, Release 0.0+unknown.202102020856

200 Chapter 2. Indices and tables



Python Module Index

k
katcp, 185
katcp.client, 104
katcp.inspecting_client, 118
katcp.kattypes, 90
katcp.resource, 125
katcp.resource_client, 136
katcp.sampling, 151
katcp.server, 159

201



KATCP Documentation, Release 0.0+unknown.202102020856

202 Python Module Index



Index

A
add_child_resource_client()

(katcp.KATCPClientResourceContainer
method), 85

add_child_resource_client()
(katcp.resource_client.KATCPClientResourceContainer
method), 143

add_group() (katcp.KATCPClientResourceContainer
method), 85

add_group() (katcp.resource_client.KATCPClientResourceContainer
method), 143

add_sensor() (katcp.AsyncDeviceServer method), 41
add_sensor() (katcp.DeviceServer method), 55
add_sensor() (katcp.server.DeviceServer method),

166
Address (class in katcp.kattypes), 90
address (katcp.resource.KATCPResource attribute),

127
address() (katcp.Sensor class method), 74
async_make_reply() (in module katcp.kattypes), 98
AsyncClient (class in katcp), 25
AsyncClient (class in katcp.client), 104
AsyncDeviceServer (class in katcp), 40
AsyncDeviceServer (class in katcp.server), 159
AsyncReply (class in katcp), 80
attach() (katcp.sampling.SampleStrategy method),

157
attach() (katcp.Sensor method), 74
AttrMappingProxy (class in katcp.resource_client),

136

B
BASE_REQUESTS (in module katcp.server), 160
bind_address (katcp.AsyncClient attribute), 27
bind_address (katcp.BlockingClient attribute), 12
bind_address (katcp.CallbackClient attribute), 19
bind_address (katcp.client.DeviceClient attribute),

112
bind_address (katcp.DeviceClient attribute), 35

bind_address (katcp.server.KATCPServer attribute),
180

blocking_request() (katcp.AsyncClient method),
27

blocking_request() (katcp.BlockingClient
method), 12

blocking_request() (katcp.CallbackClient
method), 19

blocking_request() (katcp.client.AsyncClient
method), 106

BlockingClient (class in katcp), 11
BlockingClient (class in katcp.client), 107
Bool (class in katcp.kattypes), 91
boolean() (katcp.Sensor class method), 75
build_state() (katcp.AsyncDeviceServer method),

42
build_state() (katcp.DeviceServer method), 55
build_state() (katcp.server.DeviceServer method),

166

C
call_from_thread() (katcp.server.KATCPServer

method), 180
callback_request() (katcp.AsyncClient method),

27
callback_request() (katcp.BlockingClient

method), 12
callback_request() (katcp.CallbackClient

method), 20
callback_request() (katcp.client.AsyncClient

method), 106
CallbackClient (class in katcp), 18
CallbackClient (class in katcp.client), 109
cancel() (katcp.sampling.SampleStrategy method),

157
cancel_timeouts()

(katcp.sampling.SampleEventRate method),
154

cancel_timeouts() (katcp.sampling.SamplePeriod
method), 156

203



KATCP Documentation, Release 0.0+unknown.202102020856

cancel_timeouts()
(katcp.sampling.SampleStrategy method),
157

check() (katcp.kattypes.Discrete method), 91
check() (katcp.kattypes.DiscreteMulti method), 92
check() (katcp.kattypes.Float method), 92
check() (katcp.kattypes.Int method), 93
check() (katcp.kattypes.KatcpType method), 94
check() (katcp.kattypes.Regex method), 96
check() (katcp.kattypes.StrictTimestamp method), 97
check_protocol() (katcp.DeviceMetaclass

method), 90
children (katcp.resource.KATCPResource attribute),

127
clear_listeners() (katcp.resource.KATCPSensor

method), 131
clear_strategies() (katcp.AsyncDeviceServer

method), 42
clear_strategies() (katcp.DeviceServer method),

55
clear_strategies() (katcp.server.DeviceServer

method), 166
client_connection_factory

(katcp.server.KATCPServer attribute), 180
client_resource_factory()

(katcp.KATCPClientResourceContainer
method), 85

client_resource_factory()
(katcp.resource_client.KATCPClientResourceContainer
method), 143

client_updated() (katcp.resource_client.ClientGroup
method), 137

ClientConnection (class in katcp.server), 160
ClientGroup (class in katcp.resource_client), 136
ClientRequestConnection (class in

katcp.server), 161
concurrent_reply() (in module katcp.kattypes), 98
connect() (katcp.inspecting_client.InspectingClientAsync

method), 120
connected (katcp.inspecting_client.InspectingClientAsync

attribute), 120
construct_name_filter() (in module

katcp.server), 184
convert_seconds() (katcp.AsyncClient method), 28
convert_seconds() (katcp.BlockingClient method),

13
convert_seconds() (katcp.CallbackClient method),

20
convert_seconds() (katcp.client.DeviceClient

method), 113
convert_seconds() (katcp.DeviceClient method),

35
copy() (katcp.Message method), 88
create_log_inform() (katcp.AsyncDeviceServer

method), 42
create_log_inform() (katcp.DeviceServer

method), 55
create_log_inform() (katcp.DeviceServerBase

method), 67
create_log_inform()

(katcp.server.DeviceServerBase method),
176

D
debug() (katcp.DeviceLogger method), 71
debug() (katcp.server.DeviceLogger method), 163
description (katcp.resource.KATCPRequest at-

tribute), 126
description (katcp.resource.KATCPResource at-

tribute), 127
detach() (katcp.sampling.SampleStrategy method),

157
detach() (katcp.Sensor method), 75
DeviceClient (class in katcp), 33
DeviceClient (class in katcp.client), 110
DeviceLogger (class in katcp), 71
DeviceLogger (class in katcp.server), 162
DeviceMetaclass (class in katcp), 90
DeviceServer (class in katcp), 53
DeviceServer (class in katcp.server), 164
DeviceServerBase (class in katcp), 66
DeviceServerBase (class in katcp.server), 175
disconnect() (katcp.AsyncClient method), 28
disconnect() (katcp.BlockingClient method), 13
disconnect() (katcp.CallbackClient method), 20
disconnect() (katcp.client.DeviceClient method),

113
disconnect() (katcp.DeviceClient method), 35
disconnect() (katcp.server.ClientConnection

method), 161
DISCONNECT_TIMEOUT (katcp.server.KATCPServer

attribute), 180
Discrete (class in katcp.kattypes), 91
discrete() (katcp.Sensor class method), 75
DiscreteMulti (class in katcp.kattypes), 91
drop_sampling_strategy()

(katcp.KATCPClientResource method), 82
drop_sampling_strategy()

(katcp.resource.KATCPSensor method),
131

drop_sampling_strategy()
(katcp.resource.KATCPSensorsManager
method), 134

drop_sampling_strategy()
(katcp.resource_client.KATCPClientResource
method), 140

drop_sampling_strategy()
(katcp.resource_client.KATCPClientResourceSensorsManager

204 Index



KATCP Documentation, Release 0.0+unknown.202102020856

method), 146

E
enable_thread_safety() (katcp.AsyncClient

method), 28
enable_thread_safety() (katcp.BlockingClient

method), 13
enable_thread_safety() (katcp.CallbackClient

method), 20
enable_thread_safety()

(katcp.client.DeviceClient method), 113
enable_thread_safety() (katcp.DeviceClient

method), 35
error() (katcp.DeviceLogger method), 71
error() (katcp.server.DeviceLogger method), 163
escape_name() (in module katcp.resource), 136
exp_fac (katcp.inspecting_client.ExponentialRandomBackoff

attribute), 118
ExponentialRandomBackoff (class in

katcp.inspecting_client), 118

F
failed() (katcp.inspecting_client.ExponentialRandomBackoff

method), 118
FailReply (class in katcp), 80
fatal() (katcp.DeviceLogger method), 71
fatal() (katcp.server.DeviceLogger method), 163
Float (class in katcp.kattypes), 92
float() (katcp.Sensor class method), 75
flush_on_close() (katcp.server.KATCPServer

method), 181
format_argument() (katcp.Message method), 88
format_reading() (katcp.Sensor method), 76
future_check_request()

(katcp.inspecting_client.InspectingClientAsync
method), 120

future_check_sensor()
(katcp.inspecting_client.InspectingClientAsync
method), 120

future_get_request()
(katcp.inspecting_client.InspectingClientAsync
method), 120

future_get_sensor()
(katcp.inspecting_client.InspectingClientAsync
method), 121

future_request() (katcp.AsyncClient method), 28
future_request() (katcp.BlockingClient method),

13
future_request() (katcp.CallbackClient method),

20
future_request() (katcp.client.AsyncClient

method), 107

G
get_address() (katcp.server.KATCPServer method),

181
get_default() (katcp.kattypes.KatcpType method),

94
get_reading() (katcp.resource.KATCPSensor

method), 131
get_sampling() (katcp.sampling.SampleAuto

method), 151
get_sampling() (katcp.sampling.SampleDifferential

method), 152
get_sampling() (katcp.sampling.SampleDifferentialRate

method), 153
get_sampling() (katcp.sampling.SampleEvent

method), 154
get_sampling() (katcp.sampling.SampleEventRate

method), 154
get_sampling() (katcp.sampling.SampleNone

method), 155
get_sampling() (katcp.sampling.SamplePeriod

method), 156
get_sampling() (katcp.sampling.SampleStrategy

method), 157
get_sampling_formatted()

(katcp.sampling.SampleStrategy method),
157

get_sampling_strategy()
(katcp.resource.KATCPSensorsManager
method), 134

get_sampling_strategy()
(katcp.resource_client.KATCPClientResourceSensorsManager
method), 146

get_sensor() (katcp.AsyncDeviceServer method), 42
get_sensor() (katcp.DeviceServer method), 55
get_sensor() (katcp.server.DeviceServer method),

167
get_sensors() (katcp.AsyncDeviceServer method),

42
get_sensors() (katcp.DeviceServer method), 55
get_sensors() (katcp.server.DeviceServer method),

167
get_status() (katcp.resource.KATCPSensor

method), 131
get_strategy() (katcp.sampling.SampleStrategy

class method), 157
get_value() (katcp.resource.KATCPSensor method),

131
GroupRequest (class in katcp.resource_client), 138
GroupResults (class in katcp.resource_client), 138

H
handle_inform() (katcp.AsyncClient method), 28
handle_inform() (katcp.AsyncDeviceServer

method), 42

Index 205



KATCP Documentation, Release 0.0+unknown.202102020856

handle_inform() (katcp.BlockingClient method), 13
handle_inform() (katcp.CallbackClient method), 21
handle_inform() (katcp.client.AsyncClient

method), 107
handle_inform() (katcp.client.DeviceClient

method), 113
handle_inform() (katcp.DeviceClient method), 35
handle_inform() (katcp.DeviceServer method), 56
handle_inform() (katcp.DeviceServerBase

method), 67
handle_inform() (katcp.server.DeviceServerBase

method), 176
handle_message() (katcp.AsyncClient method), 29
handle_message() (katcp.AsyncDeviceServer

method), 42
handle_message() (katcp.BlockingClient method),

13
handle_message() (katcp.CallbackClient method),

21
handle_message() (katcp.client.DeviceClient

method), 113
handle_message() (katcp.DeviceClient method), 35
handle_message() (katcp.DeviceServer method), 56
handle_message() (katcp.DeviceServerBase

method), 68
handle_message() (katcp.server.DeviceServerBase

method), 176
handle_reply() (katcp.AsyncClient method), 29
handle_reply() (katcp.AsyncDeviceServer method),

42
handle_reply() (katcp.BlockingClient method), 14
handle_reply() (katcp.CallbackClient method), 21
handle_reply() (katcp.client.AsyncClient method),

107
handle_reply() (katcp.client.DeviceClient method),

113
handle_reply() (katcp.DeviceClient method), 35
handle_reply() (katcp.DeviceServer method), 56
handle_reply() (katcp.DeviceServerBase method),

68
handle_reply() (katcp.server.DeviceServerBase

method), 176
handle_request() (katcp.AsyncClient method), 29
handle_request() (katcp.AsyncDeviceServer

method), 43
handle_request() (katcp.BlockingClient method),

14
handle_request() (katcp.CallbackClient method),

21
handle_request() (katcp.client.DeviceClient

method), 113
handle_request() (katcp.DeviceClient method), 36
handle_request() (katcp.DeviceServer method), 56
handle_request() (katcp.DeviceServerBase

method), 68
handle_request() (katcp.server.DeviceServerBase

method), 177
handle_sensor_value()

(katcp.inspecting_client.InspectingClientAsync
method), 121

has_katcp_protocol_flags() (in module
katcp.kattypes), 98

has_sensor() (katcp.AsyncDeviceServer method), 43
has_sensor() (katcp.DeviceServer method), 56
has_sensor() (katcp.server.DeviceServer method),

167

I
in_ioloop_thread() (katcp.server.KATCPServer

method), 181
info() (katcp.DeviceLogger method), 71
info() (katcp.server.DeviceLogger method), 163
inform() (in module katcp.kattypes), 99
inform() (katcp.AsyncDeviceServer method), 43
inform() (katcp.DeviceServer method), 56
inform() (katcp.DeviceServerBase method), 68
inform() (katcp.Message class method), 88
inform() (katcp.sampling.SampleEventRate method),

155
inform() (katcp.sampling.SampleStrategy method),

158
inform() (katcp.server.ClientConnection method), 161
inform() (katcp.server.DeviceServerBase method),

177
inform_build_state() (katcp.AsyncClient

method), 29
inform_build_state() (katcp.BlockingClient

method), 14
inform_build_state() (katcp.CallbackClient

method), 21
inform_build_state() (katcp.client.DeviceClient

method), 113
inform_build_state() (katcp.DeviceClient

method), 36
inform_hook_client_factory()

(katcp.inspecting_client.InspectingClientAsync
method), 121

inform_version() (katcp.AsyncClient method), 29
inform_version() (katcp.BlockingClient method),

14
inform_version() (katcp.CallbackClient method),

21
inform_version() (katcp.client.DeviceClient

method), 113
inform_version() (katcp.DeviceClient method), 36
inform_version_connect() (katcp.AsyncClient

method), 29

206 Index



KATCP Documentation, Release 0.0+unknown.202102020856

inform_version_connect()
(katcp.BlockingClient method), 14

inform_version_connect()
(katcp.CallbackClient method), 21

inform_version_connect()
(katcp.client.DeviceClient method), 113

inform_version_connect() (katcp.DeviceClient
method), 36

inspect() (katcp.inspecting_client.InspectingClientAsync
method), 121

inspect_requests()
(katcp.inspecting_client.InspectingClientAsync
method), 122

inspect_sensors()
(katcp.inspecting_client.InspectingClientAsync
method), 122

inspecting_client_factory()
(katcp.KATCPClientResource method), 82

inspecting_client_factory()
(katcp.resource_client.KATCPClientResource
method), 140

InspectingClientAsync (class in
katcp.inspecting_client), 118

InspectingClientStateType (class in
katcp.inspecting_client), 124

Int (class in katcp.kattypes), 92
integer() (katcp.Sensor class method), 76
ioloop (katcp.server.KATCPServer attribute), 181
is_active() (katcp.resource.KATCPRequest

method), 126
is_connected (katcp.resource.KATCPResource at-

tribute), 127
is_connected() (katcp.AsyncClient method), 29
is_connected() (katcp.BlockingClient method), 14
is_connected() (katcp.CallbackClient method), 21
is_connected() (katcp.client.DeviceClient method),

113
is_connected() (katcp.DeviceClient method), 36
is_connected() (katcp.inspecting_client.InspectingClientAsync

method), 123
is_connected() (katcp.KATCPClientResource

method), 82
is_connected() (katcp.KATCPClientResourceContainer

method), 85
is_connected() (katcp.resource_client.ClientGroup

method), 137
is_connected() (katcp.resource_client.KATCPClientResource

method), 140
is_connected() (katcp.resource_client.KATCPClientResourceContainer

method), 143
issue_request() (katcp.resource.KATCPDummyRequest

method), 125
issue_request() (katcp.resource.KATCPRequest

method), 126

issue_request() (katcp.resource_client.KATCPClientResourceRequest
method), 145

J
join() (katcp.AsyncClient method), 29
join() (katcp.AsyncDeviceServer method), 43
join() (katcp.BlockingClient method), 14
join() (katcp.CallbackClient method), 21
join() (katcp.client.DeviceClient method), 113
join() (katcp.DeviceClient method), 36
join() (katcp.DeviceServer method), 57
join() (katcp.DeviceServerBase method), 68
join() (katcp.server.DeviceServerBase method), 177
join() (katcp.server.KATCPServer method), 181
join() (katcp.server.MessageHandlerThread method),

183

K
katcp (module), 10, 185
katcp.client (module), 104
katcp.inspecting_client (module), 118
katcp.kattypes (module), 90
katcp.resource (module), 125
katcp.resource_client (module), 136
katcp.sampling (module), 151
katcp.server (module), 159
KatcpClientError (class in katcp), 40
KATCPClientResource (class in katcp), 81
KATCPClientResource (class in

katcp.resource_client), 139
KATCPClientResourceContainer (class in

katcp), 84
KATCPClientResourceContainer (class in

katcp.resource_client), 142
KATCPClientResourceRequest (class in

katcp.resource_client), 145
KATCPClientResourceSensorsManager (class

in katcp.resource_client), 146
KatcpDeviceError (class in katcp), 80
KATCPDummyRequest (class in katcp.resource), 125
KATCPReply (class in katcp.resource), 125
KATCPRequest (class in katcp.resource), 126
KATCPResource (class in katcp.resource), 126
KATCPResourceError, 130
KATCPResourceInactive, 130
KATCPSensor (class in katcp.resource), 130
KATCPSensorError, 133
KATCPSensorReading (class in katcp.resource), 133
KATCPSensorsManager (class in katcp.resource),

134
KATCPServer (class in katcp.server), 179
KatcpSyntaxError (class in katcp), 89
KatcpType (class in katcp.kattypes), 93

Index 207



KATCP Documentation, Release 0.0+unknown.202102020856

L
level_from_name() (katcp.DeviceLogger method),

71
level_from_name() (katcp.server.DeviceLogger

method), 163
level_name() (katcp.DeviceLogger method), 71
level_name() (katcp.server.DeviceLogger method),

163
list_sensors() (in module katcp.resource_client),

150
list_sensors() (katcp.KATCPClientResource

method), 82
list_sensors() (katcp.KATCPClientResourceContainer

method), 85
list_sensors() (katcp.resource.KATCPResource

method), 127
list_sensors() (katcp.resource_client.KATCPClientResource

method), 140
list_sensors() (katcp.resource_client.KATCPClientResourceContainer

method), 143
log() (katcp.DeviceLogger method), 72
log() (katcp.server.DeviceLogger method), 163
log_to_python() (katcp.DeviceLogger class

method), 72
log_to_python() (katcp.server.DeviceLogger class

method), 163
Lru (class in katcp.kattypes), 94
lru() (katcp.Sensor class method), 77

M
make_reply() (in module katcp.kattypes), 99
make_threadsafe() (in module katcp.client), 117
make_threadsafe_blocking() (in module

katcp.client), 117
MappingProxy (class in katcp.resource_client), 147
mass_inform() (katcp.AsyncDeviceServer method),

43
mass_inform() (katcp.DeviceServer method), 57
mass_inform() (katcp.DeviceServerBase method),

68
mass_inform() (katcp.server.ClientConnection

method), 161
mass_inform() (katcp.server.DeviceServerBase

method), 177
mass_send_message() (katcp.server.KATCPServer

method), 181
mass_send_message_from_thread()

(katcp.server.KATCPServer method), 182
MAX_LOOP_LATENCY (katcp.client.DeviceClient

attribute), 112
MAX_LOOP_LATENCY (katcp.DeviceClient attribute),

35
MAX_LOOP_LATENCY (katcp.KATCPClientResource

attribute), 82

MAX_LOOP_LATENCY (katcp.resource_client.KATCPClientResource
attribute), 140

MAX_MSG_SIZE (katcp.client.DeviceClient attribute),
112

MAX_MSG_SIZE (katcp.DeviceClient attribute), 35
MAX_MSG_SIZE (katcp.server.KATCPServer attribute),

180
MAX_WRITE_BUFFER_SIZE

(katcp.client.DeviceClient attribute), 112
MAX_WRITE_BUFFER_SIZE (katcp.DeviceClient at-

tribute), 35
MAX_WRITE_BUFFER_SIZE

(katcp.server.KATCPServer attribute), 180
Message (class in katcp), 87
MessageHandlerThread (class in katcp.server), 183
MessageParser (class in katcp), 89
messages (katcp.resource.KATCPReply attribute), 126
minimum_katcp_version() (in module

katcp.kattypes), 100
monitor_resource_sync_state() (in module

katcp.resource_client), 150

N
name (katcp.resource.KATCPRequest attribute), 126
name (katcp.resource.KATCPResource attribute), 128
name (katcp.resource.KATCPSensor attribute), 131
normalised_name (katcp.resource.KATCPSensor at-

tribute), 131
normalize_strategy_parameters() (in mod-

ule katcp.resource), 136
notify() (katcp.Sensor method), 77
notify_connected() (katcp.AsyncClient method),

29
notify_connected() (katcp.BlockingClient

method), 14
notify_connected() (katcp.CallbackClient

method), 21
notify_connected() (katcp.client.DeviceClient

method), 114
notify_connected() (katcp.DeviceClient method),

36

O
OBSERVE_UPDATES (katcp.sampling.SampleStrategy

attribute), 157
on_client_connect() (katcp.AsyncDeviceServer

method), 43
on_client_connect() (katcp.DeviceServer

method), 57
on_client_connect() (katcp.DeviceServerBase

method), 69
on_client_connect() (katcp.server.DeviceServer

method), 167

208 Index



KATCP Documentation, Release 0.0+unknown.202102020856

on_client_connect()
(katcp.server.DeviceServerBase method),
177

on_client_disconnect()
(katcp.AsyncDeviceServer method), 43

on_client_disconnect() (katcp.DeviceServer
method), 57

on_client_disconnect()
(katcp.DeviceServerBase method), 69

on_client_disconnect()
(katcp.server.DeviceServer method), 167

on_client_disconnect()
(katcp.server.DeviceServerBase method),
177

on_client_disconnect_was_called()
(katcp.server.ClientConnection method),
161

on_message() (katcp.AsyncDeviceServer method), 44
on_message() (katcp.DeviceServer method), 57
on_message() (katcp.DeviceServerBase method), 69
on_message() (katcp.server.DeviceServerBase

method), 178
on_message() (katcp.server.MessageHandlerThread

method), 184

P
pack() (katcp.kattypes.KatcpType method), 94
pack() (katcp.kattypes.Parameter method), 95
pack_types() (in module katcp.kattypes), 100
Parameter (class in katcp.kattypes), 95
parent (katcp.resource.KATCPResource attribute), 128
parent_name (katcp.resource.KATCPSensor at-

tribute), 131
parse() (katcp.MessageParser method), 89
parse_params() (katcp.Sensor class method), 77
parse_type() (katcp.Sensor class method), 77
parse_value() (katcp.resource.KATCPSensor

method), 131
parse_value() (katcp.Sensor method), 78
poll_sensor() (katcp.resource.KATCPSensorsManager

method), 135
poll_sensor() (katcp.resource_client.KATCPClientResourceSensorsManager

method), 147
preset_protocol_flags() (katcp.AsyncClient

method), 30
preset_protocol_flags() (katcp.BlockingClient

method), 14
preset_protocol_flags() (katcp.CallbackClient

method), 22
preset_protocol_flags()

(katcp.client.DeviceClient method), 114
preset_protocol_flags() (katcp.DeviceClient

method), 36

preset_protocol_flags()
(katcp.inspecting_client.InspectingClientAsync
method), 123

R
read() (katcp.Sensor method), 78
read_formatted() (katcp.Sensor method), 78
reading (katcp.resource.KATCPSensor attribute), 132
reapply_sampling_strategies()

(katcp.resource.KATCPSensorsManager
method), 135

reapply_sampling_strategies()
(katcp.resource_client.KATCPClientResourceSensorsManager
method), 147

Regex (class in katcp.kattypes), 95
register_listener()

(katcp.resource.KATCPSensor method),
132

remove_sensor() (katcp.AsyncDeviceServer
method), 44

remove_sensor() (katcp.DeviceServer method), 57
remove_sensor() (katcp.server.DeviceServer

method), 167
reply() (katcp.AsyncDeviceServer method), 44
reply() (katcp.DeviceServer method), 57
reply() (katcp.DeviceServerBase method), 69
reply() (katcp.Message class method), 88
reply() (katcp.server.ClientConnection method), 161
reply() (katcp.server.DeviceServerBase method), 178
reply_inform() (katcp.AsyncDeviceServer method),

44
reply_inform() (katcp.DeviceServer method), 58
reply_inform() (katcp.DeviceServerBase method),

69
reply_inform() (katcp.Message class method), 88
reply_inform() (katcp.server.ClientConnection

method), 161
reply_inform() (katcp.server.DeviceServerBase

method), 178
reply_ok() (katcp.Message method), 89
reply_to_request() (katcp.Message class

method), 89
reply_with_message()

(katcp.server.ClientRequestConnection
method), 162

ReplyWrappedInspectingClientAsync (class
in katcp.resource_client), 147

req (katcp.resource.KATCPResource attribute), 128
request() (in module katcp.kattypes), 100
request() (katcp.AsyncClient method), 30
request() (katcp.BlockingClient method), 15
request() (katcp.CallbackClient method), 22
request() (katcp.client.DeviceClient method), 114
request() (katcp.DeviceClient method), 36

Index 209



KATCP Documentation, Release 0.0+unknown.202102020856

request() (katcp.Message class method), 89
request_check() (in module katcp.client), 117
request_client_list()

(katcp.AsyncDeviceServer method), 44
request_client_list() (katcp.DeviceServer

method), 58
request_client_list()

(katcp.server.DeviceServer method), 167
request_factory (katcp.inspecting_client.InspectingClientAsync

attribute), 123
request_halt() (katcp.AsyncDeviceServer method),

45
request_halt() (katcp.DeviceServer method), 58
request_halt() (katcp.server.DeviceServer

method), 168
request_help() (katcp.AsyncDeviceServer method),

45
request_help() (katcp.DeviceServer method), 58
request_help() (katcp.server.DeviceServer

method), 168
request_log_level() (katcp.AsyncDeviceServer

method), 46
request_log_level() (katcp.DeviceServer

method), 59
request_log_level() (katcp.server.DeviceServer

method), 169
request_request_timeout_hint()

(katcp.AsyncDeviceServer method), 46
request_request_timeout_hint()

(katcp.DeviceServer method), 59
request_request_timeout_hint()

(katcp.server.DeviceServer method), 169
request_restart() (katcp.AsyncDeviceServer

method), 47
request_restart() (katcp.DeviceServer method),

60
request_restart() (katcp.server.DeviceServer

method), 170
request_sensor_list()

(katcp.AsyncDeviceServer method), 47
request_sensor_list() (katcp.DeviceServer

method), 60
request_sensor_list()

(katcp.server.DeviceServer method), 170
request_sensor_sampling()

(katcp.AsyncDeviceServer method), 48
request_sensor_sampling()

(katcp.DeviceServer method), 61
request_sensor_sampling()

(katcp.server.DeviceServer method), 171
request_sensor_sampling_clear()

(katcp.AsyncDeviceServer method), 49
request_sensor_sampling_clear()

(katcp.DeviceServer method), 63

request_sensor_sampling_clear()
(katcp.server.DeviceServer method), 172

request_sensor_value()
(katcp.AsyncDeviceServer method), 50

request_sensor_value() (katcp.DeviceServer
method), 63

request_sensor_value()
(katcp.server.DeviceServer method), 173

request_timeout_hint() (in module
katcp.kattypes), 101

request_version_list()
(katcp.AsyncDeviceServer method), 50

request_version_list() (katcp.DeviceServer
method), 64

request_version_list()
(katcp.server.DeviceServer method), 173

request_watchdog() (katcp.AsyncDeviceServer
method), 51

request_watchdog() (katcp.DeviceServer method),
64

request_watchdog() (katcp.server.DeviceServer
method), 174

requests (katcp.inspecting_client.InspectingClientAsync
attribute), 123

RequestType (in module katcp.inspecting_client), 125
resync_delay (katcp.inspecting_client.InspectingClientAsync

attribute), 123
return_future() (in module katcp.server), 185
return_reply() (in module katcp.kattypes), 101
running() (katcp.AsyncClient method), 30
running() (katcp.AsyncDeviceServer method), 51
running() (katcp.BlockingClient method), 15
running() (katcp.CallbackClient method), 22
running() (katcp.client.DeviceClient method), 114
running() (katcp.DeviceClient method), 37
running() (katcp.DeviceServer method), 65
running() (katcp.DeviceServerBase method), 70
running() (katcp.server.DeviceServerBase method),

178
running() (katcp.server.KATCPServer method), 182
running() (katcp.server.MessageHandlerThread

method), 184

S
SampleAuto (class in katcp.sampling), 151
SampleDifferential (class in katcp.sampling), 152
SampleDifferentialRate (class in

katcp.sampling), 152
SampleEvent (class in katcp.sampling), 153
SampleEventRate (class in katcp.sampling), 154
SampleNone (class in katcp.sampling), 155
SamplePeriod (class in katcp.sampling), 156
SampleStrategy (class in katcp.sampling), 156

210 Index



KATCP Documentation, Release 0.0+unknown.202102020856

sampling_strategy (katcp.resource.KATCPSensor
attribute), 132

send_message() (katcp.AsyncClient method), 30
send_message() (katcp.BlockingClient method), 15
send_message() (katcp.CallbackClient method), 22
send_message() (katcp.client.DeviceClient method),

114
send_message() (katcp.DeviceClient method), 37
send_message() (katcp.server.KATCPServer

method), 182
send_message_from_thread()

(katcp.server.KATCPServer method), 182
send_reply() (in module katcp.kattypes), 102
send_request() (katcp.AsyncClient method), 30
send_request() (katcp.BlockingClient method), 15
send_request() (katcp.CallbackClient method), 22
send_request() (katcp.client.DeviceClient method),

114
send_request() (katcp.DeviceClient method), 37
Sensor (class in katcp), 73
sensor (katcp.resource.KATCPResource attribute), 128
sensor_factory (katcp.inspecting_client.InspectingClientAsync

attribute), 123
SensorResultTuple (class in katcp.resource), 135
sensors (katcp.inspecting_client.InspectingClientAsync

attribute), 123
set() (katcp.resource.KATCPSensor method), 132
set() (katcp.Sensor method), 78
set_concurrency_options()

(katcp.AsyncDeviceServer method), 51
set_concurrency_options()

(katcp.DeviceServer method), 65
set_concurrency_options()

(katcp.DeviceServerBase method), 70
set_concurrency_options()

(katcp.server.DeviceServerBase method),
178

set_formatted() (katcp.resource.KATCPSensor
method), 132

set_formatted() (katcp.Sensor method), 78
set_ioloop() (katcp.AsyncClient method), 30
set_ioloop() (katcp.AsyncDeviceServer method), 52
set_ioloop() (katcp.BlockingClient method), 15
set_ioloop() (katcp.CallbackClient method), 22
set_ioloop() (katcp.client.DeviceClient method),

115
set_ioloop() (katcp.DeviceClient method), 37
set_ioloop() (katcp.DeviceServer method), 65
set_ioloop() (katcp.DeviceServerBase method), 70
set_ioloop() (katcp.KATCPClientResource

method), 83
set_ioloop() (katcp.KATCPClientResourceContainer

method), 86
set_ioloop() (katcp.resource_client.KATCPClientResource

method), 141
set_ioloop() (katcp.resource_client.KATCPClientResourceContainer

method), 144
set_ioloop() (katcp.server.DeviceServerBase

method), 179
set_ioloop() (katcp.server.KATCPServer method),

182
set_log_level() (katcp.DeviceLogger method), 72
set_log_level() (katcp.server.DeviceLogger

method), 164
set_log_level_by_name() (katcp.DeviceLogger

method), 72
set_log_level_by_name()

(katcp.server.DeviceLogger method), 164
set_restart_queue() (katcp.AsyncDeviceServer

method), 52
set_restart_queue() (katcp.DeviceServer

method), 65
set_restart_queue() (katcp.server.DeviceServer

method), 174
set_sampling_strategies()

(katcp.KATCPClientResource method), 83
set_sampling_strategies()

(katcp.KATCPClientResourceContainer
method), 86

set_sampling_strategies()
(katcp.resource.KATCPResource method),
128

set_sampling_strategies()
(katcp.resource_client.ClientGroup method),
137

set_sampling_strategies()
(katcp.resource_client.KATCPClientResource
method), 141

set_sampling_strategies()
(katcp.resource_client.KATCPClientResourceContainer
method), 144

set_sampling_strategy()
(katcp.KATCPClientResource method), 83

set_sampling_strategy()
(katcp.KATCPClientResourceContainer
method), 86

set_sampling_strategy()
(katcp.resource.KATCPResource method),
129

set_sampling_strategy()
(katcp.resource.KATCPSensor method),
132

set_sampling_strategy()
(katcp.resource.KATCPSensorsManager
method), 135

set_sampling_strategy()
(katcp.resource_client.ClientGroup method),
137

Index 211



KATCP Documentation, Release 0.0+unknown.202102020856

set_sampling_strategy()
(katcp.resource_client.KATCPClientResource
method), 141

set_sampling_strategy()
(katcp.resource_client.KATCPClientResourceContainer
method), 144

set_sampling_strategy()
(katcp.resource_client.KATCPClientResourceSensorsManager
method), 147

set_sensor_listener()
(katcp.KATCPClientResource method), 83

set_sensor_listener()
(katcp.KATCPClientResourceContainer
method), 86

set_sensor_listener()
(katcp.resource_client.KATCPClientResource
method), 142

set_sensor_listener()
(katcp.resource_client.KATCPClientResourceContainer
method), 144

set_state_callback()
(katcp.inspecting_client.InspectingClientAsync
method), 123

set_strategy() (katcp.resource.KATCPSensor
method), 132

set_value() (katcp.resource.KATCPSensor method),
132

set_value() (katcp.Sensor method), 79
setDaemon() (katcp.AsyncDeviceServer method), 51
setDaemon() (katcp.BlockingClient method), 15
setDaemon() (katcp.CallbackClient method), 22
setDaemon() (katcp.client.CallbackClient method),

110
setDaemon() (katcp.DeviceServer method), 65
setDaemon() (katcp.DeviceServerBase method), 70
setDaemon() (katcp.server.DeviceServerBase

method), 178
setDaemon() (katcp.server.KATCPServer method),

182
setup_sensors() (katcp.AsyncDeviceServer

method), 52
setup_sensors() (katcp.DeviceServer method), 65
setup_sensors() (katcp.server.DeviceServer

method), 174
simple_request() (katcp.inspecting_client.InspectingClientAsync

method), 123
start() (katcp.AsyncClient method), 30
start() (katcp.AsyncDeviceServer method), 52
start() (katcp.BlockingClient method), 15
start() (katcp.CallbackClient method), 23
start() (katcp.client.DeviceClient method), 115
start() (katcp.DeviceClient method), 37
start() (katcp.DeviceServer method), 65
start() (katcp.DeviceServerBase method), 70

start() (katcp.inspecting_client.InspectingClientAsync
method), 124

start() (katcp.KATCPClientResource method), 83
start() (katcp.KATCPClientResourceContainer

method), 86
start() (katcp.resource_client.KATCPClientResource

method), 142
start() (katcp.resource_client.KATCPClientResourceContainer

method), 144
start() (katcp.sampling.SampleEventRate method),

155
start() (katcp.sampling.SampleNone method), 156
start() (katcp.sampling.SamplePeriod method), 156
start() (katcp.sampling.SampleStrategy method), 158
start() (katcp.server.DeviceServerBase method), 179
start() (katcp.server.KATCPServer method), 183
state (katcp.inspecting_client.InspectingClientAsync

attribute), 124
status (katcp.resource.KATCPSensorReading at-

tribute), 134
status() (katcp.Sensor method), 79
stop() (katcp.AsyncClient method), 31
stop() (katcp.AsyncDeviceServer method), 52
stop() (katcp.BlockingClient method), 16
stop() (katcp.CallbackClient method), 23
stop() (katcp.client.AsyncClient method), 107
stop() (katcp.client.DeviceClient method), 115
stop() (katcp.DeviceClient method), 37
stop() (katcp.DeviceServer method), 66
stop() (katcp.DeviceServerBase method), 70
stop() (katcp.KATCPClientResourceContainer

method), 86
stop() (katcp.resource_client.KATCPClientResourceContainer

method), 144
stop() (katcp.server.DeviceServerBase method), 179
stop() (katcp.server.KATCPServer method), 183
stop() (katcp.server.MessageHandlerThread method),

184
Str (class in katcp.kattypes), 96
StrictTimestamp (class in katcp.kattypes), 96
string() (katcp.Sensor class method), 79
Struct (class in katcp.kattypes), 97
succeeded (katcp.resource.KATCPReply attribute),

126
succeeded (katcp.resource_client.GroupResults

attribute), 139
success() (katcp.inspecting_client.ExponentialRandomBackoff

method), 118
sync_with_ioloop() (katcp.AsyncDeviceServer

method), 52
sync_with_ioloop() (katcp.DeviceServer method),

66
sync_with_ioloop() (katcp.DeviceServerBase

method), 70

212 Index



KATCP Documentation, Release 0.0+unknown.202102020856

sync_with_ioloop()
(katcp.server.DeviceServerBase method),
179

synced (katcp.inspecting_client.InspectingClientAsync
attribute), 124

SyncError, 125

T
ThreadsafeClientConnection (class in

katcp.server), 184
ThreadSafeKATCPClientGroupWrapper (class

in katcp.resource_client), 149
ThreadSafeKATCPClientResourceRequestWrapper

(class in katcp.resource_client), 150
ThreadSafeKATCPClientResourceWrapper

(class in katcp.resource_client), 150
ThreadSafeKATCPSensorWrapper (class in

katcp.resource_client), 150
time() (katcp.resource.KATCPSensorsManager

method), 135
timeout_hint (katcp.resource.KATCPRequest

attribute), 126
Timestamp (class in katcp.kattypes), 97
timestamp() (katcp.Sensor class method), 79
TimestampOrNow (class in katcp.kattypes), 98
trace() (katcp.DeviceLogger method), 72
trace() (katcp.server.DeviceLogger method), 164
transform_future() (in module

katcp.resource_client), 151

U
unhandled_inform() (katcp.AsyncClient method),

31
unhandled_inform() (katcp.BlockingClient

method), 16
unhandled_inform() (katcp.CallbackClient

method), 23
unhandled_inform() (katcp.client.DeviceClient

method), 115
unhandled_inform() (katcp.DeviceClient method),

38
unhandled_reply() (katcp.AsyncClient method), 31
unhandled_reply() (katcp.BlockingClient method),

16
unhandled_reply() (katcp.CallbackClient method),

23
unhandled_reply() (katcp.client.DeviceClient

method), 115
unhandled_reply() (katcp.DeviceClient method),

38
unhandled_request() (katcp.AsyncClient method),

31
unhandled_request() (katcp.BlockingClient

method), 16

unhandled_request() (katcp.CallbackClient
method), 23

unhandled_request() (katcp.client.DeviceClient
method), 115

unhandled_request() (katcp.DeviceClient
method), 38

unpack() (katcp.kattypes.KatcpType method), 94
unpack() (katcp.kattypes.Parameter method), 95
unpack_message() (in module katcp.kattypes), 102,

103
unpack_types() (in module katcp.kattypes), 103
unregister_listener()

(katcp.resource.KATCPSensor method),
133

until_all_children_in_state()
(katcp.KATCPClientResourceContainer
method), 86

until_all_children_in_state()
(katcp.resource_client.KATCPClientResourceContainer
method), 144

until_any_child_in_state()
(katcp.KATCPClientResourceContainer
method), 86

until_any_child_in_state()
(katcp.resource_client.KATCPClientResourceContainer
method), 144

until_connected() (katcp.AsyncClient method), 31
until_connected() (katcp.BlockingClient method),

16
until_connected() (katcp.CallbackClient method),

23
until_connected() (katcp.client.DeviceClient

method), 115
until_connected() (katcp.DeviceClient method),

38
until_not_synced() (katcp.KATCPClientResource

method), 83
until_not_synced()

(katcp.KATCPClientResourceContainer
method), 86

until_not_synced()
(katcp.resource_client.KATCPClientResource
method), 142

until_not_synced()
(katcp.resource_client.KATCPClientResourceContainer
method), 144

until_protocol() (katcp.AsyncClient method), 31
until_protocol() (katcp.BlockingClient method),

16
until_protocol() (katcp.CallbackClient method),

23
until_protocol() (katcp.client.DeviceClient

method), 115
until_protocol() (katcp.DeviceClient method), 38

Index 213



KATCP Documentation, Release 0.0+unknown.202102020856

until_running() (katcp.AsyncClient method), 31
until_running() (katcp.BlockingClient method), 16
until_running() (katcp.CallbackClient method), 23
until_running() (katcp.client.DeviceClient

method), 116
until_running() (katcp.DeviceClient method), 38
until_state() (katcp.inspecting_client.InspectingClientAsync

method), 124
until_state() (katcp.KATCPClientResource

method), 83
until_state() (katcp.resource_client.KATCPClientResource

method), 142
until_stopped() (katcp.AsyncClient method), 31
until_stopped() (katcp.BlockingClient method), 16
until_stopped() (katcp.CallbackClient method), 24
until_stopped() (katcp.client.DeviceClient

method), 116
until_stopped() (katcp.DeviceClient method), 38
until_stopped() (katcp.inspecting_client.InspectingClientAsync

method), 124
until_stopped() (katcp.KATCPClientResource

method), 84
until_stopped() (katcp.KATCPClientResourceContainer

method), 86
until_stopped() (katcp.resource_client.KATCPClientResource

method), 142
until_stopped() (katcp.resource_client.KATCPClientResourceContainer

method), 144
until_synced() (katcp.KATCPClientResource

method), 84
until_synced() (katcp.KATCPClientResourceContainer

method), 87
until_synced() (katcp.resource_client.KATCPClientResource

method), 142
until_synced() (katcp.resource_client.KATCPClientResourceContainer

method), 145
update() (katcp.sampling.SampleAuto method), 151
update() (katcp.sampling.SampleDifferential method),

152
update() (katcp.sampling.SampleEventRate method),

155
update() (katcp.sampling.SampleStrategy method),

158
update_in_ioloop() (in module katcp.sampling),

158

V
value() (katcp.Sensor method), 80
VERSION (in module katcp), 90
version() (katcp.AsyncDeviceServer method), 53
version() (katcp.DeviceServer method), 66
version() (katcp.server.DeviceServer method), 175
VERSION_STR (in module katcp), 90

W
wait() (katcp.KATCPClientResource method), 84
wait() (katcp.KATCPClientResourceContainer

method), 87
wait() (katcp.resource.KATCPResource method), 129
wait() (katcp.resource.KATCPSensor method), 133
wait() (katcp.resource_client.ClientGroup method),

137
wait() (katcp.resource_client.KATCPClientResourceContainer

method), 145
wait_connected() (katcp.AsyncClient method), 32
wait_connected() (katcp.BlockingClient method),

17
wait_connected() (katcp.CallbackClient method),

24
wait_connected() (katcp.client.DeviceClient

method), 116
wait_connected() (katcp.DeviceClient method), 38
wait_connected() (katcp.KATCPClientResource

method), 84
wait_connected() (katcp.resource_client.KATCPClientResource

method), 142
wait_disconnected() (katcp.AsyncClient method),

32
wait_disconnected() (katcp.BlockingClient

method), 17
wait_disconnected() (katcp.CallbackClient

method), 24
wait_disconnected() (katcp.client.DeviceClient

method), 116
wait_disconnected() (katcp.DeviceClient

method), 39
wait_protocol() (katcp.AsyncClient method), 32
wait_protocol() (katcp.BlockingClient method), 17
wait_protocol() (katcp.CallbackClient method), 24
wait_protocol() (katcp.client.DeviceClient

method), 117
wait_protocol() (katcp.DeviceClient method), 39
wait_running() (katcp.AsyncClient method), 32
wait_running() (katcp.AsyncDeviceServer method),

53
wait_running() (katcp.BlockingClient method), 17
wait_running() (katcp.CallbackClient method), 25
wait_running() (katcp.client.DeviceClient method),

117
wait_running() (katcp.DeviceClient method), 39
wait_running() (katcp.DeviceServer method), 66
wait_running() (katcp.DeviceServerBase method),

70
wait_running() (katcp.server.DeviceServerBase

method), 179
wait_running() (katcp.server.KATCPServer

method), 183

214 Index



KATCP Documentation, Release 0.0+unknown.202102020856

wait_running() (katcp.server.MessageHandlerThread
method), 184

warn() (katcp.DeviceLogger method), 72
warn() (katcp.server.DeviceLogger method), 164
wrapped_request()

(katcp.resource_client.ReplyWrappedInspectingClientAsync
method), 149

Index 215


	Contents
	Release Notes
	Core API
	Kattypes
	Low level client API (client)
	Concrete Intermediate-level KATCP Client API (inspecting_client)
	Abstract High-level KATCP Client API (resource)
	Concrete High-level KATCP Client API (resource_client)
	Sampling
	KATCP Server API (server)
	Tutorial
	How to Contribute

	Indices and tables
	Python Module Index
	Index

