KATCP Documentation
Release 0.0+unknown.202210211301

Simon Cross

Oct 21, 2022

Contents

1 Contents 3
.1 Release NOtES ot e e e e e e e e e e e e 3
1.2 Core APL e e e e e e e e e 11
1.3 Kattypes e e 91
1.4 Lowlevel client API (client) e e 104
1.5 Concrete Intermediate-level KATCP Client API (inspecting_client) 118
1.6 Abstract High-level KATCP Client API (resource) o i i .. 125
1.7 Concrete High-level KATCP Client API (resource_client) 136
1.8 Sampling e 151
1.9 KATCP Server API (server) o i i e e e e e e e e e e e e e 159
110 Tutorial o o o o e 185
[.11 Howto Contribute o it e et e e e e e e e e e e e e e e 194
2 Indices and tables 199
Python Module Index 201
Index 203

KATCP Documentation, Release 0.0+unknown.202210211301

KATCP is a simple ASCII communication protocol layered on top of TCP/IP.

It is developed as a part of the Karoo Array Telescope (KAT) project and used at KAT for the monitoring and control
of hardware devices.

The protocol specification NRE-KAT7-6.0-IFCE-002-Rev5-1.pdf is maintained as an internal memo. The
latest version is Rev5. 1. The specification source is hosted here: https://github.com/ska-sa/katcp-guidelines

Contents 1

http://ska.ac.za/
https://github.com/ska-sa/katcp-guidelines

KATCP Documentation, Release 0.0+unknown.202210211301

2 Contents

CHAPTER 1

Contents

1.1 Release Notes

1.1.1 0.9.3

* Make compatible in Python 3.9 by addressing deprecation issues.

1.1.2 0.9.2

 Consistent error message in py2 and py3 for error in Timestamp decode

1.1.3 0.9.1

* Fix issues in KATCPReply __repr__in py3

1.1.4 0.9.0

* Add asyncio compatible ioloop to ioloop manager.

1.1.5 0.8.0

* Added bulk sensor sampling feature.

1.1.6 0.7.2

* Support for handling generator expressions in Discrete type.

* Fix handling of strings and bytes in get_sensor in testutils.

KATCP Documentation, Release 0.0+unknown.202210211301

* Allow strings or bytes for assert_request_failsandtest_assert_request_succeeds function
arguments.

* Handle st r type correctly (‘easier’) in testutils.get_sensor for python 2 and python 3.
* Allow bytes and strings in test_sensor_11ist comparison of sensors.
* Correct handling of floats test_sensor_list.

* black formatting on certain test files.

1.1.7 0.71

e All params in future_get_sensor are now cast to byte strings.
e Added teststo test_fake_clients.pyand test_inspecting_client.py.

* Ensure testutils method casts expected requests to byte strings.

1.1.8 0.7.0

* Added Python 3 compatibility.

See also CHANGELOG . md for more details on changes.

Important changes for Python 3 compatibility

General notes

The package is now compatible with both Python 2 and 3. The goals of the migration were:
* Do not change the public API.
* Do not break existing functionality for Python 2.
» Ease migration of packages using katcp to Python 3.

Despite these goals, some of the stricter type checking that has been added may force minor updates in existing code.
E.g., using integer for the options of a discrete sensor is no longer allowed.

Asynchronous code is still using tornado in the same Python 2 way. The new Python 3.5 async and await keywords
are not used. The tornado version is also pinned to older versions that support both Python 2 and 3. The 5.x versions
also support Python 2, but they are avoided as some significant changes result in test failures.

The Python future package was used for the compatibility layer. The use of the newstr and newbytes compat-
ibility types was avoided, to reduce confusion. L.e., from builtins import str, bytes isnotdone.

Docstrings

In docstrings the interpretation of parameter and return types described as “str”” has changed slightly. In Python 2 the
str type is a byte string, while in Python 3, st r is a unicode string. The st r type is referred to as the “native” string
type. In code, native literal strings would have no prefix, for example: "native string", as opposed to explicit
byte strings, b"byte string", and explicit unicode strings, u"unicode string". In the docstrings “bytes”
means a byte string is expected (or returned), “str” means a native string, and “str or bytes” means either type.

4 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

Changes to types

As part of the Python 3 compatibility update, note the following:

e katcp.Message. - arguments and mid attributes will be forced to byte strings in all Python versions.
This is to match what is sent on the wire (serialised byte stream). - name: is expected to be a native
string. - repr (): the result will differ slightly in Python 3 - the arguments will be shown as quoted byte
strings. E.g., Python 2: "<Message reply ok (123, zzz)>",vs. Python 3: "<Message reply
ok (b'123', b'zzz')>".In all versions, arguments longer than 1000 characters are now truncated.

* katcp.Sensor.-name,description,units, params (for discrete sensors): __init___ cantake byte
strings or native strings, but attributes will be coerced to native strings. - set__formatted, parse_value:
only accept byte strings (stricter checking). - The float and strict_timestamp sensor values are now
encoded using repr () instead of "%.15g". This means that more significant digits are transmitted on the
wire (16 to 17, instead of 15), and the client will be able to reconstruct the exact some floating point value.

Non-ASCIl and UTF-8

Prior to these changes, all strings were byte strings, so there was no encoding required. Arbitrary bytes could be used
for message parameters and string sensor values. After these changes, strings sensors and St r types are considered
“text”. In Python 3, UTF-8 encoding will be used when changing between byte strings and unicode strings for “text”.
This has the following effects:

* katcp.Message - the arguments are always using byte strings, so arbitrary bytes can still be sent and
received using this class directly.

* katcp.Sensor - Values for string and discrete sensor types cannot be arbitrary byte strings in Python
3 - they need to be UTF-8 compatible.

* kattypes.Str, kattypes.Discrete, kattypes.DiscreteMulti - These types is still used in
request and reply decorators. - For sending messages, they accept any type of object, but UTF-8 en-
coding is used if values are not already byte strings. - When decoding received messages, “native” strings are
returned.

Keep in mind that a Python 2 server may be communicating with a Python 3 client, so sticking to ASCII is safest. If
you are sure both client and server are on Python 3 (or understand the encoding the same), then UTF-8 could be used.
That is also the encoding option used by the aiokatcp package.

Performance degradation

Adding the compatibility results in more checks and conversions. From some basic benchmarking, there appears to be
up to 20% performance degradation when instantiating message objects.

Benchmark, in ipython:

import random, katcp

args_groups = []
for i in range (1000):
args_groups.append ((random.randint (0, 1) ==
random.randint (0, 1000),
random.random () ,
str (random.random())))

1,

def benchmark () :

(continues on next page)

1.1. Release Notes 5

https://github.com/ska-sa/aiokatcp

KATCP Documentation, Release 0.0+unknown.202210211301

(continued from previous page)

for args in args_groups:
tx_msg = katcp.Message.reply('foo', =xargs)
serialised = bytes (tx_msqg)
parser = katcp.MessageParser ()
rx_msg = parser.parse(serialised)
assert tx_msg == rx_msg

Stimeit benchmark ()

e Old Py2: 10 loops, best of 3: 23.4 ms per loop
e New Py2: 10 loops, best of 3: 29.9 ms per loop
e New Py3: 25.1 ms + 86.8 s per loop (mean = std. dev. of 7 runs, 10 loops each)

1.1.9 0.6.4

* Fix some client memory leaks, and add until_stopped methods.
¢ Increase server MAX_QUEUE_SIZE to handle more clients.
 Use correct ioloop for client AsyncEvent objects.

See also CHANGELOG . md for more details on changes.

Important API changes

Stopping KATCP clients

When stopping KATCP client classes that use a managed ioloop (i.e., create their own in a new thread), the traditional
semantics are to call stop () followed by join () from another thread. This is unchanged. In the case of an
unmanaged ioloop (i.e., an existing ioloop instance is provided to the client), we typically stop from the same thread,
and calling join () does nothing. For the case of unmanaged ioloops, a new method, until_stopped (), has
been added. It returns a future that resolves when the client has stopped. The caller can yield on this future to be
sure that the client has completed all its coroutines. Using this new method is not required. If the ioloop will keep
running, the stopped client’s coroutines will eventually exit. However, it is useful in some cases, e.g., to verify correct
clean up in unit tests.

The new method is available on katcp.DeviceClient and derived classes, on katcp.
inspecting_client.InspectingClientAsync, and on the high-level clients katcp.
KATCPClientResource and katcp.KATCPClientResourceContainer.

An additional change is that the inspecting client now sends a state update (indicating that it is disconnected and not
synced) when stopping. This means high-level clients that were waiting on until_not_synced when the client
was stopped will now be notified. Previously, this was not the case.

1.1.10 0.6.3

* Put docs on readthedocs.
* Better error handling for messages with non-ASCII characters (invalid).
* Increase container sync time to better support large containers.

¢ Limit tornado version to <5.

6 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

* Allow sampling strategy to be removed from cache.

* Improve error messages for DeviceMetaClass assertions.

* Increase server’s message queue length handle more simultaneous client connections.
 Improve Jenkins pipeline configuration.

* Add information on how to contribute to the project.

See also CHANGELOG . md for more details on changes.

1.1.11 0.6.2

* Various bug fixes
* Docstring and code style improvements

* Bumped the tornado dependency to at least 4.3

Added the ability to let ClientGroup wait for a quorum of clients

Added default request-timeout-hint implementation to server.py
* Moved IOLoopThreadWrapper to ioloop_manager.py, a more sensible location
* Added a random-exponential retry backoff process

See also CHANGELOG . md for more details on changes.

1.1.12 0.6.1

* Various bug fixes

» Improvements to testing utilities

* Improvements to various docstrings

* Use katversion to determine version string on install

* Better dependency management using setup.py with setuptools
* Fixed a memory leak when using KATCPResourceContainer

See also CHANGELOG . md for more details on changes.

1.1.13 0.6.0

* Major change: Use the tornado event loop and async socket routines.
See also CHANGELOG . md for more details on changes.
Important APl changes

Tornado based event loop(s)

While the networking stack and event loops have been re-implemented using Tornado, this change should be largely
invisible to existing users of the library. All client and server classes now expose an ioloop attribute that is the
tornado.ioloop.IOLoop instance being used. Unless new server or client classes are used or default settings

1.1. Release Notes 7

KATCP Documentation, Release 0.0+unknown.202210211301

are changed, the thread-safety and concurrency semantics of 0.5.x versions should be retained. User code that made
use of non-public interfaces may run into trouble.

High level auto-inspecting KATCP client APIs added

The high level client API inspects a KATCP device server and present requests as method calls and sensors as objects.
See Using the high-level client API.

Sensor observer API

The katcp.Sensor sensor observer API has been changed to pass the sensor reading in the observer.update()
callback, preventing potential lost updates due to race conditions. This is a backwards incompatible change. Whereas
before observers were called as observer.update(sensor), they are now called as observer.update(sensor, reading),
where reading is an instance of katcp.core.Reading.

Sample Strategy callback API

Sensor strategies now call back with the sensor object and raw Python datatype values rather than the sensor name and
KATCP formatted values. The sensor classes have also grown a katcp. Sensor. format_reading () method
that can be used to do KATCP-version specific formatting of the sensor reading.

1.1.14 0.5.5

* Various cleanups (logging, docstrings, base request set, minor refactoring)
* Improvements to testing utilities

» Convenience utility functions in katcp.version, katcp.client, katcp.testutils.

1.1.15 0.5.4

* Change event-rate strategy to always send an update if the sensor has changed and shortest-period has passed.

* Add differential-rate strategy.

1.1.16 0.5.3

Add convert_seconds () method to katcp client classes that converts seconds into the device timestamp format.

1.1.17 0.5.2

Fix memory leak in sample reactor, other minor fixes.

1.1.18 0.5.1

Minor bugfixes and stability improvements

8 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

1.1.19 0.5.0

First stable release supporting (a subset of) KATCP v5. No updates apart from documentation since 0.5.0a0; please
refer to the 0.5.0a release notes below.

1.1.20 0.5.0a0

First alpha release supporting (a subset of) KATCP v5. The KATCP v5 spec brings a number of backward incompatible
changes, and hence requires care. This library implements support for both KATCP v5 and for the older dialect. Some
API changes have also been made, mainly in aid of fool-proof support of the Message ID feature of KATCP v5. The
changes do, however, also eliminate a category of potential bugs for older versions of the spec.

Important API changes

CallbackClient.request()

Renamed request () to callback_request () to be more consistent with superclass API.

Sending replies and informs in server request handlers

The function signature used for request handler methods in previous versions of this library were re-
quest_requestname(self, sock, msg), where sock is a raw python socket object and msg is a katcp Message object.
The sock object was never used directly by the request handler, but was passed to methods on the server to send inform
or reply messages.

Before:

class MyServer (DeviceServer) :
def request_echo(self, sock, msg):
self.inform(sock, Message.inform('echo', len(msg.arguments)))
return Message.reply('echo', 'ok', xmsg.arguments)

The old method requires the name of the request to be repeated several times, inviting error and cluttering code.
The user is also required to instantiate katcp Message object each time a reply is made. The new method passes a
request-bound connection object that knows to what request it is replying, and that automatically constructs Message
objects.

Now:

class MyServer (DeviceServer) :
def request_echo(self, req, msg):
req.inform(len (msg.arguments)))
return reqg.make_reply('ok', xmsg.arguments)

A reqg.reply () method with the same signature as reqg.make_reply () is also available for asyncronous reply
handlers, and req.reply_with_message () which takes a Message instance rather than message arguments.
These methods replace the use of DeviceServer.reply ().

The request object also contains the katcp request Message object (req.msg), and the equivalent of a socket object
(req.client_connection). See the next section for a description of client_connection.

Using the server methods with a req object in place of sock will still work as before, but will log deprecation warnings.

1.1. Release Notes 9

KATCP Documentation, Release 0.0+unknown.202210211301

Connection abstraction

Previously, the server classes internally used each connection’s low-level sock object as an identifier for the
connection. In the interest of abstracting out the transport backend, the sock object has been replaced by a
ClientConnectionTCP object. This object is passed to all server handler functions (apart from request han-
dlers) instead of the sock object. The connection object be used in the same places where sock was previously used. It
also defines inform (), reply_inform() and reply () methods for sending Message objects to a client.

Backwards incompatible KATCP V5 changes

Timestamps

Excerpted from NRF-KAT7-6.0-IFCE-002-Rev5.pdf:

All core messages involving time (i.e. timestamp or period specifications) have changed from using mil-
liseconds to seconds. This provides consistency with SI units. Note also that from version five timestamps
should always be specified in UTC time.

Message ldentifiers (mid)

Excerpted from NRE-KAT7-6.0-IFCE-002-Rev5.pdf:

Message identifiers were introduced in version 5 of the protocol to allow replies to be uniquely associated
with a particular request. If a client sends a request with a message identifier the server must include the
same identifier in the reply. Message identifiers are limited to integers in the range 1 to 231 1 inclusive.
It is the client’s job to construct suitable identifiers — a server should not assume that these are unique.
Clients that need to determine whether a server supports message identifiers should examine the #version-
connect message returned by the server when the client connects (see Section 4). If no #version-connect
message is received the client may assume message identifiers are not supported.

also:

If the request contained a message id each inform that forms part of the response should be marked with
the original message id.

Support for message IDs is optional. A properly implemented server should never use mids in replies unless the
client request has an mid. Similarly, a client should be able to detect whether a server supports MIDs by checking
the #version-connect informs sent by the server, or by doing a /version-list request. Furthermore, a KATCP v5 server
should never send #build-state or #version informs.

Server KATCP Version Auto-detection

The DeviceClient client uses the presence of #build-state or #version informs as a heuristic to detect pre-v5
servers, and the presence of #version-connect informs to detect v5+ servers. If mixed messages are received the client
gives up auto-detection and disconnects. In this case preset_protocol_flags () can be used to configure the
client before calling start ().

Level of KATCP support in this release

This release implements the majority of the KATCP v5 spec; excluded parts are:

* Support for optional warning/error range meta-information on sensors.

10 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

* Differential-rate sensor strategy.

1.2 Core API

1.2.1 Client

Two different clients are provided: the B1ockingClient for synchronous communication with a server and the
CallbackClient for asynchronous communication. Both clients raise KatcpClientError when exceptions

occur.

The DeviceClient base class is provided as a foundation for those wishing to implement their own clients.

BlockingClient

class katcp.BlockingClient (host, port, tb_limit=20, timeout=5.0, logger=<logging.Logger ob-
Jject>, auto_reconnect=True)

Methods
BlockingClient. Send a request message and wait for its reply.
blocking_request(msg|,...])
BlockingClient. Send a request message.
callback_request(msgl,...])
BlockingClient. Convert a time in seconds to the device timestamp

convert_seconds(time_seconds)

units.

BlockingClient.disconnect()

Force client connection to close, reconnect if auto-
connect set.

BlockingClient.
enable_thread safety()

Enable thread-safety features.

BlockingClient. future_request(msg|,

D

Send a request message, with future replies.

BlockingClient.handle_inform(msg)

Handle inform messages related to any current re-
quests.

BlockingClient.handle_ message(msg)

Handle a message from the server.

BlockingClient.handle_reply(msg)

Handle a reply message related to the current re-
quest.

BlockingClient.handle_request(msg)

Dispatch a request message to the appropriate
method.

BlockingClient.
inform _build_state(msg)

Handle katcp v4 and below build-state inform.

BlockingClient.inform version(msg)

Handle katcp v4 and below version inform.

BlockingClient.
inform version_connect(msg)

Process a #version-connect message.

BlockingClient.is_connected()

Check if the socket is currently connected.

BlockingClient. join([timeout])

Rejoin the client thread.

BlockingClient .next()

BlockingClient.
notify_ connected(connected)

Event handler that is called whenever the connection
status changes.

Continued on next page

1.2. Core API

11

KATCP Documentation, Release 0.0+unknown.202210211301

Table 1 — continued from previous page

BlockingClient.
preset_protocol_flags(...)

Preset server protocol flags.

BlockingClient.request(msg[, use_mid])

Send a request message, with automatic message ID
assignment.

BlockingClient.running() Whether the client is running.
BlockingClient.send_message(msg) Send any kind of message.
BlockingClient.send_request(msg) Send a request message.

BlockingClient .setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False

BlockingClient.set_ioloop([ioloop]) Set the tornado.ioloop.JOLoop instance to use.
BlockingClient.start([timeout]) Start the client in a new thread.
BlockingClient.stop(*args, **kwargs) Stop a running client.
BlockingClient.unhandled inform(msg) Fallback method for inform messages without a reg-

istered handler.

BlockingClient.unhandled_reply(msg)

Fallback method for reply messages without a regis-
tered handler.

BlockingClient. Fallback method for requests without a registered
unhandled request(msg) handler.

BlockingClient. Return future that resolves when the client is con-
until_connected(**kwargs) nected.

BlockingClient. Return future that resolves after receipt of katcp pro-
until_protocol(**kwargs) tocol info.

BlockingClient. Return future that resolves when the client is run-
until_running([timeout]) ning.

BlockingClient. Return future that resolves when the client has
until_stopped([timeout]) stopped.

BlockingClient. Wait until the client is connected.
wait_connected([timeout])

BlockingClient. Wait until the client is disconnected.
walt_disconnected([timeout])

BlockingClient. Wait until katcp protocol information has been re-

wait_protocol([timeout])

ceived from server.

BlockingClient.wait_running([timeout])

Wait until the client is running.

bind_address
(host, port) where the client is connecting

blocking_ request (msg, timeout=None, use_mid=None)

Send a request message and wait for its reply.

Parameters msg : Message object
The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the

AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns reply : Message object

The reply message received.

12

Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

informs : list of Message objects
A list of the inform messages received.

callback_request (msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,

use_mid=None)
Send a request message.

Parameters msg : Message object
The request message to send.
reply_cb : function
The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)
inform_cb : function
The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)
user_data : tuple
Optional user data to send to the reply and inform callbacks.
timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional
Whether to use message IDs. Default is to use message IDs if the server supports them.

convert_ seconds (time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect ()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety ()
Enable thread-safety features.

Must be called before start().

future_request (msg, timeout=None, use_mid=None)
Send a request message, with future replies.

Parameters msg : Message object
The request Message to send.
timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional
Whether to use message IDs. Default is to use message IDs if the server supports them.
Returns A tornado.concurrent.Future that resolves with: :

reply : Message object

1.2

Core API 13

KATCP Documentation, Release 0.0+unknown.202210211301

The reply message received.
informs : list of Message objects
A list of the inform messages received.

handle_inform (msg)
Handle inform messages related to any current requests.

Inform messages not related to the current request go up to the base class method.
Parameters msg : Message object
The inform message to dispatch.

handle_message (msg)
Handle a message from the server.

Parameters msg : Message object
The Message to dispatch to the handler methods.

handle_reply (msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.
Parameters msg : Message object
The reply message to dispatch.

handle_request (msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object
The request message to dispatch.

inform build state (msg)
Handle katcp v4 and below build-state inform.

inform_version (msg)
Handle katcp v4 and below version inform.

inform version_connect (msg)
Process a #version-connect message.

is_connected ()
Check if the socket is currently connected.

Returns connected : bool
Whether the client is connected.

join (timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds
Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

14 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

notify connected (connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool
Whether the client has just connected (True) or just disconnected (False).
preset_protocol_£lags (protocol_flags)
Preset server protocol flags.
Sets the assumed server protocol flags and disables automatic server version detection.
Parameters protocol_flags : katcp.core.ProtocolFlags instance

request (msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message
use_mid : bool or None, default=None
Returns mid : string or None
The message id, or None if no msg id is used
If use_mid is None and the server supports msg ids, or if use_mid is :
True a message ID will automatically be assigned msg.mid is None. :
if msg.mid has a value, and the server supports msg ids, that value :
will be used. If the server does not support msg ids, KatcpVersionError :
will be raised. :

running ()
Whether the client is running.

Returns running : bool
Whether the client is running.

send_message (msg)
Send any kind of message.

Parameters msg : Message object
The message to send.

send_request (msg)
Send a request message.

Parameters msg : Message object
The request Message to send.

setDaemon (daemonic)
Set daemonic state of the managed ioloop thread to True / False

1.2

Core API 15

KATCP Documentation, Release 0.0+unknown.202210211301

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_ioloop (ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start (timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop (*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds
Seconds to wait for both client thread to have started, and for stopping.

unhandled_ inform (msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object
The inform message that wasn’t processed by any handlers.

unhandled_ reply (msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object
The reply message that wasn’t processed by any handlers.

unhandled_request (msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object
The request message that wasn’t processed by any handlers.

until connected (**kwargs)
Return future that resolves when the client is connected.

until_protocol (**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

16 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

until_running (timeout=None)
Return future that resolves when the client is running.

Notes

Must be called from the same ioloop as the client.

until_stopped (timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected (timeout=None)
‘Wait until the client is connected.

Parameters timeout : float in seconds
Seconds to wait for the client to connect.
Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected (timeout=None)
Wait until the client is disconnected.

Parameters timeout : float in seconds
Seconds to wait for the client to disconnect.
Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol (timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

1.2. Core API 17

KATCP Documentation, Release 0.0+unknown.202210211301

Returns received : bool
Whether protocol information was received
If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running (timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds
Seconds to wait for the client to start running.
Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

CallbackClient

class katcp.CallbackClient (host, port, tb_limit=20, timeout=5.0, logger=<logging.Logger ob-
ject>, auto_reconnect=True)

Methods

CallbackClient. Send a request message and wait for its reply.

blocking_ request(msg|,...])

CallbackClient. Send a request message.

callback_request(msgl,...])

CallbackClient. Convert a time in seconds to the device timestamp

convert_seconds(time_seconds) units.

CallbackClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

CallbackClient. Enable thread-safety features.

enable_thread safety()

CallbackClient. future_request(msg], Send a request message, with future replies.

...D

CallbackClient.handle_ inform(msg) Handle inform messages related to any current re-
quests.

CallbackClient.handle_message(msg) Handle a message from the server.

CallbackClient.handle_ reply(msg) Handle a reply message related to the current re-
quest.

CallbackClient.handle_ request(msg) Dispatch a request message to the appropriate
method.

Continued on next page

18 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

Table 2 — continued from previous page

CallbackClient.
inform build state(msg)

Handle katcp v4 and below build-state inform.

CallbackClient.inform version(msg)

Handle katcp v4 and below version inform.

CallbackClient.
inform version_connect(msg)

Process a #version-connect message.

CallbackClient.is_ connected()

Check if the socket is currently connected.

CallbackClient . join([timeout])

Rejoin the client thread.

CallbackClient.next()

CallbackClient. Event handler that is called whenever the connection
notify connected(connected) status changes.
CallbackClient. Preset server protocol flags.

preset_protocol_flags(...)

CallbackClient.request(msg[, use_mid])

Send a request message, with automatic message 1D
assignment.

CallbackClient.running() Whether the client is running.

CallbackClient.send_message(msg) Send any kind of message.

CallbackClient.send _request(msg) Send a request message.

CallbackClient.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to
True / False

CallbackClient.set_1ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.

CallbackClient .start([timeout]) Start the client in a new thread.

CallbackClient.stop(*args, **kwargs) Stop a running client.

CallbackClient.unhandled_inform(msg) Fallback method for inform messages without a reg-
istered handler.

CallbackClient.unhandled reply(msg) Fallback method for reply messages without a regis-
tered handler.

CallbackClient. Fallback method for requests without a registered

unhandled_request(msg) handler.

CallbackClient. Return future that resolves when the client is con-

until_connected(**kwargs) nected.

CallbackClient. Return future that resolves after receipt of katcp pro-

until_protocol(**kwargs) tocol info.

CallbackClient. Return future that resolves when the client is run-

until_running([timeout]) ning.

CallbackClient. Return future that resolves when the client has

until_stopped([timeout]) stopped.

CallbackClient. Wait until the client is connected.

wait_connected([timeout])

CallbackClient. Wait until the client is disconnected.

wait_disconnected([timeout])

CallbackClient. Wait until katcp protocol information has been re-

wait_protocol([timeout])

ceived from server.

CallbackClient.wait_running([timeout])

Wait until the client is running.

bind_address
(host, port) where the client is connecting

blocking_request (msg, timeout=None, use_mid=None)

Send a request message and wait for its reply.

Parameters msg : Message object

The request Message to send.

1.2. Core API

KATCP Documentation, Release 0.0+unknown.202210211301

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional
Whether to use message IDs. Default is to use message IDs if the server supports them.
Returns reply : Message object
The reply message received.
informs : list of Message objects
A list of the inform messages received.

callback_request (msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,

use_mid=None)
Send a request message.

Parameters msg : Message object
The request message to send.
reply_cb : function
The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)
inform_cb : function
The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)
user_data : tuple
Optional user data to send to the reply and inform callbacks.
timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional
Whether to use message IDs. Default is to use message IDs if the server supports them.

convert_ seconds (time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect ()
Force client connection to close, reconnect if auto-connect set.

enable_thread safety ()
Enable thread-safety features.

Must be called before start().

future_request (msg, timeout=None, use_mid=None)
Send a request message, with future replies.

Parameters msg : Message object

The request Message to send.

20 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional
Whether to use message IDs. Default is to use message IDs if the server supports them.
Returns A tornado.concurrent.Future that resolves with: :
reply : Message object
The reply message received.
informs : list of Message objects
A list of the inform messages received.

handle_inform (msg)
Handle inform messages related to any current requests.

Inform messages not related to the current request go up to the base class method.
Parameters msg : Message object
The inform message to dispatch.

handle_message (msg)
Handle a message from the server.

Parameters msg : Message object
The Message to dispatch to the handler methods.

handle_reply (msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.
Parameters msg : Message object
The reply message to dispatch.

handle_request (msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object
The request message to dispatch.

inform build_ state (msg)
Handle katcp v4 and below build-state inform.

inform_version (msg)
Handle katcp v4 and below version inform.

inform version_connect (msg)
Process a #version-connect message.

is_connected ()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

1.2

Core API 21

KATCP Documentation, Release 0.0+unknown.202210211301

join (timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify connected (connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the

server until notify_connected completes.

Parameters connected : bool
Whether the client has just connected (True) or just disconnected (False).
preset_protocol_f£flags (protocol_flags)
Preset server protocol flags.
Sets the assumed server protocol flags and disables automatic server version detection.
Parameters protocol_flags : katcp.core.ProtocolFlags instance

request (msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message
use_mid : bool or None, default=None
Returns mid : string or None
The message id, or None if no msg id is used
If use_mid is None and the server supports msg ids, or if use_mid is :
True a message ID will automatically be assigned msg.mid is None. :
if msg.mid has a value, and the server supports msg ids, that value :
will be used. If the server does not support msg ids, KatcpVersionError :
will be raised. :

running ()
Whether the client is running.

Returns running : bool
Whether the client is running.

send_message (msg)
Send any kind of message.

Parameters msg : Message object

22 Chapter 1

. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

The message to send.

send_request (msg)
Send a request message.

Parameters msg : Message object
The request Message to send.

setDaemon (daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_ioloop (ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start (timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop (*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds
Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform (msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object
The inform message that wasn’t processed by any handlers.

unhandled_reply (msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object
The reply message that wasn’t processed by any handlers.

unhandled_request (msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

1.2

Core API 23

KATCP Documentation, Release 0.0+unknown.202210211301

The request message that wasn’t processed by any handlers.

until_connected (**kwargs)
Return future that resolves when the client is connected.

until_protocol (**kwargs)

Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance

self.protocol_flags.

until_running (timeout=None)
Return future that resolves when the client is running.

Notes

Must be called from the same ioloop as the client.

until_stopped (timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this

method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.

When stopping, the running flag is cleared some time before stopped is set.

wait_connected (timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds
Seconds to wait for the client to connect.
Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected (timeout=None)
‘Wait until the client is disconnected.

Parameters timeout : float in seconds
Seconds to wait for the client to disconnect.
Returns disconnected : bool

Whether the client is disconnected.

24

Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol (timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds
Seconds to wait for the client to connect.
Returns received : bool
Whether protocol information was received
If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running (timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds
Seconds to wait for the client to start running.
Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

AsyncClient

class katcp.AsyncClient (host, port, th_limit=20, timeout=5.0, logger=<logging.Logger object>,

auto_reconnect=True)
Implement async and callback-based requests on top of DeviceClient.

This client will use message IDs if the server supports them.
Parameters host : string

Host to connect to.

port : int
Port to connect to.

tb_limit : int, optional
Maximum number of stack frames to send in error traceback.

logger : object, optional
Python Logger object to log to. Default is a logger named ‘katcp’.

auto_reconnect : bool, optional

1.2. Core API

25

KATCP Documentation, Release 0.0+unknown.202210211301

Whether to automatically reconnect if the connection dies.
timeout : float in seconds, optional

Default number of seconds to wait before a callback callback_request times out. Can
be overridden in individual calls to callback_request.

Examples

>>> C
>>> C
>>> C

>>>
>>>
>>>

Q Q ==

>>>

>>> def reply_cb(msg):

print "Reply:", msg

>>> def inform_cb (msqg) :

print "Inform:", msg

= AsyncClient ('localhost', 10000)

.start ()
.ioloop.add_callback(

c.callback_request,
katcp.Message.request ('myreq'),
reply_cb=reply_cb,
inform_cb=inform_cb,

expect reply to be printed here
stop the client once we're finished with it

.stop ()
.join ()

Methods

AsyncClient.blocking_request(msg|, Send a request message and wait for its reply.

timeout, .

)

AsyncClient.callback_request(msg|, Send a request message.

D

AsyncClient.convert_seconds(time_seconds)Convert a time in seconds to the device timestamp

units.

AsyncClient.disconnect() Force client connection to close, reconnect if auto-

connect set.

AsyncClient.enable thread safety() Enable thread-safety features.

AsyncClient. future_ request(msg[, time- Send arequest message, with future replies.

out,...])

AsyncClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

AsyncClient.handle_message(msg) Handle a message from the server.

AsyncClient.handle reply(msg) Handle a reply message related to the current re-
quest.

AsyncClient.handle_request(msg) Dispatch a request message to the appropriate
method.

AsyncClient.inform build state(msg) Handle katcp v4 and below build-state inform.

AsyncClient.inform_version(msg) Handle katcp v4 and below version inform.

AsyncClient.inform version_connect(msgrocess a #version-connect message.

Continued on next page

26

Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

Table 3 — continued from previous page

AsyncClient.is_connected() Check if the socket is currently connected.
AsyncClient . join([timeout]) Rejoin the client thread.

AsyncClient .next()

AsyncClient.notify connected(connected) Event handler that is called whenever the connection

status changes.

AsyncClient.preset_protocol_flags(protoPotslagsver protocol flags.
AsyncClient.request(msg[, use_mid]) Send a request message, with automatic message ID
assignment.
AsyncClient.running() Whether the client is running.
AsyncClient.send_message(msg) Send any kind of message.
AsyncClient.send_request(msg) Send a request message.
AsyncClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
AsyncClient.start([timeout]) Start the client in a new thread.
AsyncClient.stop(*args, **kwargs) Stop a running client.
AsyncClient.unhandled_inform(msg) Fallback method for inform messages without a reg-
istered handler.
AsyncClient.unhandled_reply(msg) Fallback method for reply messages without a regis-
tered handler.
AsyncClient.unhandled_request(msg) Fallback method for requests without a registered
handler.
AsyncClient.until_connected(**kwargs) Return future that resolves when the client is con-
nected.
AsyncClient.until_protocol(¥**kwargs) Return future that resolves after receipt of katcp pro-
tocol info.
AsyncClient.until_running([timeout]) Return future that resolves when the client is run-
ning.
AsyncClient.until_stopped([timeout]) Return future that resolves when the client has
stopped.
AsyncClient.wait_connected([timeout]) Wait until the client is connected.
AsyncClient.wait_disconnected([timeout]) Wait until the client is disconnected.
AsyncClient.wait_protocol([timeout]) Wait until katcp protocol information has been re-
ceived from server.
AsyncClient.wait_running([timeout]) Wait until the client is running.

bind_address
(host, port) where the client is connecting

blocking_ request (msg, timeout=None, use_mid=None)

Send a request message and wait for its reply.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the

AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.
Returns reply : Message object

The reply message received.

1.2

Core API 27

KATCP Documentation, Release 0.0+unknown.202210211301

informs : list of Message objects
A list of the inform messages received.

callback_request (msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,

use_mid=None)
Send a request message.

Parameters msg : Message object
The request message to send.
reply_cb : function
The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)
inform_cb : function
The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)
user_data : tuple
Optional user data to send to the reply and inform callbacks.
timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional
Whether to use message IDs. Default is to use message IDs if the server supports them.

convert_ seconds (time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect ()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety ()
Enable thread-safety features.

Must be called before start().

future_request (msg, timeout=None, use_mid=None)
Send a request message, with future replies.

Parameters msg : Message object
The request Message to send.
timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional
Whether to use message IDs. Default is to use message IDs if the server supports them.
Returns A tornado.concurrent.Future that resolves with: :

reply : Message object

28 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

The reply message received.
informs : list of Message objects
A list of the inform messages received.

handle_inform (msg)
Handle inform messages related to any current requests.

Inform messages not related to the current request go up to the base class method.
Parameters msg : Message object
The inform message to dispatch.

handle_message (msg)
Handle a message from the server.

Parameters msg : Message object
The Message to dispatch to the handler methods.

handle_reply (msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.
Parameters msg : Message object
The reply message to dispatch.

handle_request (msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object
The request message to dispatch.

inform build state (msg)
Handle katcp v4 and below build-state inform.

inform_version (msg)
Handle katcp v4 and below version inform.

inform version_connect (msg)
Process a #version-connect message.

is_connected ()
Check if the socket is currently connected.

Returns connected : bool
Whether the client is connected.

join (timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds
Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

1.2

Core API

29

KATCP Documentation, Release 0.0+unknown.202210211301

notify connected (connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool
Whether the client has just connected (True) or just disconnected (False).
preset_protocol_£lags (protocol_flags)
Preset server protocol flags.
Sets the assumed server protocol flags and disables automatic server version detection.
Parameters protocol_flags : katcp.core.ProtocolFlags instance

request (msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message
use_mid : bool or None, default=None
Returns mid : string or None
The message id, or None if no msg id is used
If use_mid is None and the server supports msg ids, or if use_mid is :
True a message ID will automatically be assigned msg.mid is None. :
if msg.mid has a value, and the server supports msg ids, that value :
will be used. If the server does not support msg ids, KatcpVersionError :
will be raised. :

running ()
Whether the client is running.

Returns running : bool
Whether the client is running.

send_message (msg)
Send any kind of message.

Parameters msg : Message object
The message to send.

send_request (msg)
Send a request message.

Parameters msg : Message object
The request Message to send.

set_ioloop (ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

30 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start (timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop (*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds
Seconds to wait for both client thread to have started, and for stopping.

unhandled inform (msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object
The inform message that wasn’t processed by any handlers.

unhandled_reply (msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object
The reply message that wasn’t processed by any handlers.

unhandled_request (msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object
The request message that wasn’t processed by any handlers.

until_connected (**kwargs)
Return future that resolves when the client is connected.

until_protocol (**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running (timeout=None)
Return future that resolves when the client is running.

1.2

Core API 31

KATCP Documentation, Release 0.0+unknown.202210211301

Notes

Must be called from the same ioloop as the client.

until_stopped (timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, sfop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected (timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds
Seconds to wait for the client to connect.
Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected (timeout=None)
‘Wait until the client is disconnected.

Parameters timeout : float in seconds
Seconds to wait for the client to disconnect.
Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol (timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds
Seconds to wait for the client to connect.
Returns received : bool

Whether protocol information was received

32 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running (timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds
Seconds to wait for the client to start running.
Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

Base Classes

class katcp.DeviceClient (host, port, tb_limit=20, logger=<logging.Logger object>,

]) auto_reconnect=True)
Device client proxy.

Subclasses should implement .reply_*, .inform_* and send_request_* methods to take actions when messages
arrive, and implement unhandled_inform, unhandled_reply and unhandled_request to provide fallbacks for mes-
sages for which there is no handler.

Request messages can be sent by calling .send_request().
Parameters host : string
Host to connect to.
port : int
Port to connect to.
tb_limit : int
Maximum number of stack frames to send in error traceback.
logger : object
Python Logger object to log to.
auto_reconnect : bool

Whether to automatically reconnect if the connection dies.

Notes

The client may block its ioloop if the default blocking tornado DNS resolver is used. When an ioloop is shared,
it would make sense to configure one of the non-blocking resolver classes, see http://tornado.readthedocs.org/
en/latest/netutil.html

1.2. Core API 33

http://tornado.readthedocs.org/en/latest/netutil.html
http://tornado.readthedocs.org/en/latest/netutil.html

KATCP Documentation, Release 0.0+unknown.202210211301

Examples
>>> MyClient (DeviceClient) :
def reply_myreq(self, msqg):
print str (msg)
>>> ¢ = MyClient ('localhost', 10000) {
>>> c.start ()
>>> c.send_request (katcp.Message.request ('myreq'))
>>> # expect reply to be printed here
>>> # stop the client once we're finished with it
>>> c.stop ()
>>> c.join ()
Methods
DeviceClient.convert_seconds(time_second€onvert a time in seconds to the device timestamp
units.
DeviceClient.disconnect() Force client connection to close, reconnect if auto-
connect set.
DeviceClient.enable thread safety() Enable thread-safety features.
DeviceClient.handle_inform(msg) Dispatch an inform message to the appropriate
method.
DeviceClient.handle_message(msg) Handle a message from the server.
DeviceClient.handle_reply(msg) Dispatch a reply message to the appropriate method.
DeviceClient.handle_request(msg) Dispatch a request message to the appropriate
method.
DeviceClient.inform build state(msg) Handle katcp v4 and below build-state inform.
DeviceClient.inform version(msg) Handle katcp v4 and below version inform.
DeviceClient.inform version_connect(milpcess a #version-connect message.
DeviceClient.is_connected() Check if the socket is currently connected.
DeviceClient . join([timeout]) Rejoin the client thread.
DeviceClient .next()
DeviceClient.notify connected(connected)Event handler that is called whenever the connection
status changes.
DeviceClient.preset_protocol_flags(...)Preset server protocol flags.
DeviceClient.request(msg[, use_mid]) Send a request message, with automatic message 1D
assignment.
DeviceClient.running() Whether the client is running.
DeviceClient.send message(msg) Send any kind of message.
DeviceClient.send request(msg) Send a request message.
DeviceClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
DeviceClient .start([timeout]) Start the client in a new thread.
DeviceClient . stop([timeout]) Stop a running client.
DeviceClient.unhandled_inform(msg) Fallback method for inform messages without a reg-
istered handler.
DeviceClient.unhandled reply(msg) Fallback method for reply messages without a regis-
tered handler.
DeviceClient.unhandled request(msg) Fallback method for requests without a registered

handler.

Continued on next page

34

Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

Table 4 — continued from previous page

DeviceClient.until_connected(**kwargs) Return future that resolves when the client is con-
nected.

DeviceClient.until_ protocol(**kwargs) Return future that resolves after receipt of katcp pro-
tocol info.

DeviceClient.until_running([timeout]) Return future that resolves when the client is run-
ning.

DeviceClient.until_stopped([timeout]) Return future that resolves when the client has
stopped.

DeviceClient.wait_connected([timeout]) Wait until the client is connected.

DeviceClient.wait_disconnected([timeout]Wait until the client is disconnected.

DeviceClient.wait_protocol([timeout]) Wait until katcp protocol information has been re-
ceived from server.
DeviceClient .wait_running([timeout]) Wait until the client is running.

MAX LOOP_LATENCY = 0.03
Do not spend more than this many seconds reading pipelined socket data

[OStream inline-reading can result in ioloop starvation (see https://groups.google.com/forum/#!topic/
python-tornado/yJrDAwWDR_kA).

MAX MSG_SIZE = 2097152
Maximum message size that can be received in bytes.

If more than MAX_MSG_SIZE bytes are read from the socket without encountering a message terminator
(i.e. newline), the connection is closed.

MAX WRITE BUFFER SIZE = 4194304
Maximum outstanding bytes to be buffered by the server process.

If more than MAX_WRITE_BUFFER_SIZE bytes are outstanding, the connection is closed. Note that the
OS also buffers socket writes, so more than MAX_WRITE_BUFFER_SIZE bytes may be untransmitted
in total.

bind_address
(host, port) where the client is connecting

convert_seconds (time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect ()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety ()
Enable thread-safety features.

Must be called before start().

handle_inform (msg)
Dispatch an inform message to the appropriate method.

Parameters msg : Message object

The inform message to dispatch.

1.2

Core API 35

https://groups.google.com/forum/#!topic/python-tornado/yJrDAwDR_kA
https://groups.google.com/forum/#!topic/python-tornado/yJrDAwDR_kA

KATCP Documentation, Release 0.0+unknown.202210211301

handle_message (msg)
Handle a message from the server.

Parameters msg : Message object
The Message to dispatch to the handler methods.

handle_reply (msg)
Dispatch a reply message to the appropriate method.

Parameters msg : Message object
The reply message to dispatch.

handle_request (msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object
The request message to dispatch.

inform_build_state (msg)
Handle katcp v4 and below build-state inform.

inform version (msg)
Handle katcp v4 and below version inform.

inform_version_connect (msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool
Whether the client is connected.

join (timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify connected (connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

36 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

preset_protocol_£flags (protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.
Parameters protocol_flags : katcp.core.ProtocolFlags instance

request (msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message
use_mid : bool or None, default=None
Returns mid : string or None
The message id, or None if no msg id is used
If use_mid is None and the server supports msg ids, or if use_mid is :
True a message ID will automatically be assigned msg.mid is None. :
if msg.mid has a value, and the server supports msg ids, that value :
will be used. If the server does not support msg ids, KatcpVersionError :
will be raised. :

running ()
Whether the client is running.

Returns running : bool
Whether the client is running.

send_message (msg)
Send any kind of message.

Parameters msg : Message object
The message to send.

send_request (msg)
Send a request message.

Parameters msg : Message object
The request Message to send.

set_ioloop (ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start (timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

1.2

Core API 37

KATCP Documentation, Release 0.0+unknown.202210211301

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop (timeout=None)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds
Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform (msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object
The inform message that wasn’t processed by any handlers.

unhandled_reply (msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object
The reply message that wasn’t processed by any handlers.

unhandled_request (msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object
The request message that wasn’t processed by any handlers.

until_connected (**kwargs)
Return future that resolves when the client is connected.

until_protocol (**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running (timeout=None)
Return future that resolves when the client is running.

Notes

Must be called from the same ioloop as the client.

until_stopped (timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

38

Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.202210211301

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected (fimeout=None)
‘Wait until the client is connected.

Parameters timeout : float in seconds
Seconds to wait for the client to connect.
Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected (timeout=None)
‘Wait until the client is disconnected.

Parameters timeout : float in seconds
Seconds to wait for the client to disconnect.
Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol (timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds
Seconds to wait for the client to connect.
Returns received : bool
Whether protocol information was received
If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running (timeout=None)
Wait until the client is running.

1.2. Core API 39

KATCP Documentation, Release 0.0+unknown.202210211301

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

Exceptions

class katcp.KatcpClientError
Raised by KATCP clients when an error occurs.

1.2.2 Server

AsyncDeviceServer

class katcp.AsyncDeviceServer (*args, **kwargs)
DeviceServer that is automatically configured for async use.

Same as instantiating a

ods set_concurrency_options(thread_safe=False,

DeviceServer

instance and calling meth-
handler_thread=False) and

set_ioloop(tornado.ioloop.IOLoop.current()) before starting.

Methods

AsyncDeviceServer.add_sensor(sensor)

Add a sensor to the device.

AsyncDeviceServer.build_state()

Return build state string of the form name-
major.minor[(alblrc)n].

AsyncDeviceServer.
clear strategies(client_conn)

Clear the sensor strategies of a client connection.

AsyncDeviceServer.
create_exception_reply_and_log(...)

AsyncDeviceServer.
create_log_inform(...[,...])

Create a katcp logging inform message.

AsyncDeviceServer.
get_sensor(sensor_name)

Fetch the sensor with the given name.

AsyncDeviceServer.get_sensors()

Fetch a list of all sensors.

AsyncDeviceServer.
handle_inform(connection, msg)

Dispatch an inform message to the appropriate
method.

AsyncDeviceServer.
handle message(...)

Handle messages of