
Client: NRF (National Research Foundation)

Project: Telescope Project

Type: Subsystem Interface Specification

Guidelines for Communication with Devices

Document number: NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Classification: Unrestricted

Author: S. Cross, R. Crida, T. Bennett,
M. Welz, L. van den Heever,

N. Marais and A. Joubert

Date: 2019/09/16

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Document Approval

Name Designation Affiliation Date Signature

Submitted by T. van Balla DSP Systems Engineer SARAO

Authored by A. Joubert CAM Technical Lead SARAO

Approved by M. Welz Electronics Software Manager SARAO

Approved by J. Manley DSP Functional Manager SARAO

Aproved by S. Ratcliffe SDP Technical Lead SARAO

Accepted by S. Salie Group Lead: System Analysts SARAO

Document History

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 2 of 41

Tyrone van Balla (Sep 16, 2019)
Tyrone van Balla

Simon Ratcliffe (Sep 16, 2019)
Simon Ratcliffe

Anton Joubert (Sep 17, 2019)
Anton Joubert

MWe(z (Sep 17, 2019)
MWe(z

Sulayman Salie (Sep 17, 2019)
Sulayman Salie

https://na1.documents.adobe.com/verifier?tx=CBJCHBCAABAAUzsSo8py0LDeQ0GDIjE88DM0lPTnqtl1
https://na1.documents.adobe.com/verifier?tx=CBJCHBCAABAAUzsSo8py0LDeQ0GDIjE88DM0lPTnqtl1
https://na1.documents.adobe.com/verifier?tx=CBJCHBCAABAAUzsSo8py0LDeQ0GDIjE88DM0lPTnqtl1
https://na1.documents.adobe.com/verifier?tx=CBJCHBCAABAAUzsSo8py0LDeQ0GDIjE88DM0lPTnqtl1
https://na1.documents.adobe.com/verifier?tx=CBJCHBCAABAAUzsSo8py0LDeQ0GDIjE88DM0lPTnqtl1
https://na1.documents.adobe.com/verifier?tx=CBJCHBCAABAAUzsSo8py0LDeQ0GDIjE88DM0lPTnqtl1

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Revision Date of Issue ECN Number Comments

A 2008/06/27 N/A Initial version.

B 2008/06/30 N/A Added REQUEST Restart.

C 2008/06/30 N/A Updates after review of Rev B.

D 2008/07/17 N/A Added details for replies plus ref to logging memo.

E 2008/07/21 N/A Added static IP configuration and incorporated logging
memo.

1 2008/07/31 N/A Changes described in tags/RevE/NRF-KAT7-6.0-
IFCE-002-RevE-COAR.xls including describing
simulators.

1A 2008/08/01 N/A Fixed mistakes with Sample Config in diagrams and re-
moved ref to INFORM Config. Added REQUEST Help
and INFORM Disconnect.

1B 2008/10/01 N/A Changes and improvements prompted by initial imple-
mentations of libraries for the protocol.

2 2008/10/10 N/A Provide option of using PTP for time synchronization.
Describe how Proxies and Devices should handle mal-
formed messages.

2A 2008/10/23 N/A Allow any amount of whitespace between arguments.
Introduce underscore and at sign escapes.

3 2008/10/24 N/A Trim logging options down to those likely to be used.
Remove confusing "mandatory" lines from logging ta-
ble.

3A 2008/11/20 N/A Added document family figure for context.

3B 2009/02/06 N/A Changes resulting from CSS Design Review 1.

4 2009/02/06 KAT-7-ECP-
003

Changes from multi-client ECP.

5 2012/07/30 KAT-7-ECP-
038

Add optional support for message identifiers. New mes-
sages for version and build state identification. Add
support for dynamic katcp interfaces. Use seconds and
UTC instead of milliseconds and undefined timezones
for timestamps. Add new sensor states (unreachable,
inactive). Add event-rate and differential-rate sensor
strategies. Change handling of sensor ranges and add
optional warn/error range specification.
Deprecate built-state and version informs. Deprecate
config and mode modules and lru sensor type.
Backwards incompatible: Changing timestamps from
milliseconds to seconds, handling of sensor ranges, up-
dated sensor types.

5A 2019/09/05 MKAT-ECP-
233

Minor update for version 5.1. Add optional support for
request timeout hints. Add optional support for setting
sensor sampling strategies in bulk. Provide more details
on valid character set for sensor names.

5.1 2019/09/16 MKAT-ECP-
233

Formal release of Version 5.1.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 3 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Document Software

Package Version Filename

Stylesheet katdoc 1.1.1-katcp katdoc.sty

Word processor LATEX 3.14159265-2.6-1.40.18 (TeX Live 2017) NRF-KAT7-6.0-IFCE-002.tex

Diagrams Inkscape 0.46 images/*.svg

Diagrams Inkscape 0.46 images/*.pdf

Diagrams epstopdf 2.9.5gw images/sarao_logo.pdf

Company Details

Name South African Radio Astronomy Observatory

Physical/Postal Address

Cape Town Office
Black River Park North
2 Fir Street
Observatory
7925

Tel. +27 21 506 7300

Fax +27 21 506 7375

Website http://www.ska.ac.za

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 4 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Contents

1 Introduction 8

1.1 Backwards Incompatible Changes in Version 5 . 9

2 Messaging Protocol [Required] 10

2.1 Message grammar . 11

2.2 Message Identifiers . 12

2.3 Informs Associated with Requests . 12

3 Datatypes [Required] 13

4 Core Messages [Required] 15

4.1 Requests . 15

4.2 Asynchronous Informs . 16

4.2.1 Deprecated Asynchronous Informs . 17

5 Additional Messages [Optional] 19

5.1 Requests . 19

6 Logging [Required] 20

6.1 Standard Logging Levels . 20

6.2 Requests . 20

6.3 Asynchronous Informs . 20

7 Sensors [Required] 22

7.1 Sensor Sampling . 22

7.2 Requests . 23

7.3 Asynchronous Informs . 26

8 Multi-client [Optional] 27

8.1 Requests . 27

8.2 Asynchronous Informs . 28

9 Single-client [Optional] 29

10 Device Configuration [Deprecated] 30

11 State and Mode [Deprecated] 31

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 5 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

A KAT Devices 32

A.1 Physical context . 32

A.1.1 Device - DHCP Server . 32

A.1.2 Device - NTP Server . 33

A.1.3 Device - Proxy . 33

A.2 Device Start-up and Configuration . 34

A.3 Timestamps and Leap Seconds . 34

A.4 Timed Command Execution . 35

A.5 Gaussian Integer Datatype . 35

A.6 Logging . 35

A.7 Software Simulators . 36

B MeerKAT Sensors 38

B.1 Failure identification . 38

B.1.1 Failure Detection Logging . 39

B.1.2 Failure Example . 39

B.2 Health sensors . 40

B.3 Other notes . 40

C Applicable and Reference Documents 41

C.1 Applicable Documents . 41

C.2 Related Documents . 41

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 6 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

List of Figures

1 Context diagram showing relationship between the device and other system components. . . . 33

2 The testing framework connecting both to the standard interface and the test interface of the
device simulator. 37

3 Testing the proxy using the device simulator. 37

List of Tables

1 List of requests covered by this document. The requests that send inform messages as part of
their reply are marked with [informs] in their description. More detail is provided in the module
which covers the request. 8

2 List of informs covered by this document. More detail is provided in the module which covers
the inform. 9

3 Table describing the proposed protocol layers. 10

4 List of standard return codes. Only ok indicates success. The codes invalid, fail and any
unlisted return code indicate a failed request. 10

5 Example request and reply messages. 11

6 Formatting for parameter types. 13

7 Standard logging level definitions . 21

8 Sensor status definitions. 22

9 Sampling strategy definitions. Required strategies must be implemented for all sensors. 24

10 Summary of which clients asynchronous informs should be sent to. 27

11 Mapping of sensor status to FMECA severity. 39

12 Failure Modes of Stargazing Widget identified by FMECA. 40

13 Failure Detection Methods of Stargazing Widget identified by FMECA. 40

14 Device Health Sensor Values. 40

List of Abbreviations

API Application Programming Interface
BNF Backus-Naur Form [2]
DHCP Dynamic Host Configuration Protocol
KAT Karoo Array Telescope
KATCP KAT Communication Protocol
ICD Interface Control Document
IP Internet Protocol
LRU Line Replaceable Unit
NTP Network Time Protocol
RFE Radio Front End
SKA Square Kilometer Array
TCP/IP Transmission Control Protocol/Internet Protocol
UTP Unshielded Twisted Pair

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 7 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

1 Introduction

The purpose of this document is to describe a communication protocol between hardware devices and the
software that controls them. It has been produced by SKA (Square Kilometer Array) South Africa as part of the
KAT (Karoo Array Telescope) project and the protocol design has been driven by the KAT project requirements.
The protocol has been dubbed KATCP (the KAT Communication Protocol). Note that additional requirements
relating to devices being implemented for the KAT project are captured in Appendix A.

Broadly speaking, KATCP consists of newline-separated text messages sent asynchronously over a TCP/IP
stream. There are three categories of messages: requests, replies and informs. Request messages expect some
sort of acknowledgement. Reply messages acknowledge requests. Inform messages require no acknowledge-
ment. Inform messages are of two types: those sent synchronously as part of a reply and those sent asyn-
chronously.

A summary of the standard requests is provided in Table 1. Table 2 provides a summary of the standard
asynchronous informs.

This document is divided into sections describing the modules that make up the protocol. Hopefully this makes
the guidelines easier to read and implement. Modules are divided into three types: optional (implementations
may conform to these at their discretion), required (implementations must conform to these) and deprecated
(these are optional and implementations should not rely on them being present in future versions of this doc-
ument). The multi-client and single-client modules are both optional, but all devices must conform to one of
these two.

Request Required? Module Description
client-list optional Multi-client List the clients connected [informs].
configure deprecated Device Configuration Configure properties on a device.
halt required Core Messages Halt a device server.
help required Core Messages Return help on the requests supported by a de-

vice [informs].
log-level required Logging Query or set the logging level.
mode deprecated State and Mode Query or change the mode.
request-timeout-hint optional Additional Messages Return timeout hints for requests [informs].
restart required Core Messages Restart a device server.
sensor-list required Sensors List the sensors a device supplies [informs].
sensor-sampling required Sensors Configure reporting of device sensor values.
sensor-value required Sensors Request sensor values [informs].
version-list required Core Messages Query component and role version informa-

tion [informs].
watchdog required Core Messages Ping the device.

Table 1: List of requests covered by this document. The requests that send inform messages as part of their
reply are marked with [informs] in their description. More detail is provided in the module which covers the
request.

Table of all informs sent by servers and which module they occur in and whether they are optional.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 8 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Inform Required? Module Description
build-state deprecated Core Messages Report build information for the device software.
client-connected optional Multi-client Inform other clients when a client connects.
disconnect required Core Messages Inform a client that its about to be disconnected.
log required Logging Report logging information and errors.
request-timeout-hint optional Additional Messages Report suggested timeouts for requests.
sensor-status required Sensors Report sensor values.
version deprecated Core Messages Report version information for the device interface.
version-connect required Core Messages Report device and protocol version information to a client.

Table 2: List of informs covered by this document. More detail is provided in the module which covers the
inform.

1.1 Backwards Incompatible Changes in Version 5

KATCP Version 5 introduces some changes that are backwards incompatible with prior versions. Therefore,
it is imperative that KATCP version 5 devices correctly identify their KATCP version at connect time (see
Section 4.2). These changes are highlighted in this subsection.

Change from milliseconds to seconds All core messages involving time (i.e. timestamp or period specifica-
tions) have changed from using milliseconds to seconds. This provides consistency with SI units.

• Note also that from version five timestamps should always be specified in UTC time.

Handling of sensor range limits The way sensor range limits are specified and interpreted have changed (see
Section 7.2).

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 9 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

2 Messaging Protocol [Required]

The preferred interface to devices is a text-based protocol resembling a command-line interface. It should be
accessible over a TCP/IP connection. The purpose of the protocol is to enable control and monitoring of a
device. It is not intended for high-volume data transport. The protocol layers are described in Table 3.

Layer
Application katcp
Transport TCP/IP
Link Ethernet
Physical UTP

Table 3: Table describing the proposed protocol layers.

Communication consists of a number of messages, each message consisting of a line of text. The protocol
supports requests, replies and inform messages. The protocol is symmetrical in that either party may send
any type of message. Requests are indicated by "?", replies by "!" and informs by "#". A request should be
acknowledged by a reply for synchronous communication. An inform can be sent asynchronously and does not
require a reply. Replies should not be sent except in response to a request.

Although the protocol is symmetric, it is envisaged that requests will usually be sent to the device and that the
device will be the source of inform messages. This is true for all messages described in this document.

A reply is necessary for every request, however the nature of the reply may change depending on the request.
The reply message should have the same name as the request message, even when the request name does not
correspond to a request handled by the device.

The first parameter of a reply message should always be a return code. A return code of ok indicates successful
processing of the request, while anything else indicates failure. The recommended failure strings are invalid
(for malformed requests) and fail (for valid requests which could not be processed) but devices may return
other failure strings. On success, further parameters are specific to the type of request made while in the case of
failure a second parameter should describe the failure in more detail and in human-readable form. The standard
return codes are listed in Table 4.

Return Code Description
ok Request successfully processed. Further argu-

ments are request-specific.
invalid Request malformed. Second argument is a

human-readable description of the error.
fail Valid request that could not be processed. Sec-

ond argument is a human-readable description
of the error.

Table 4: List of standard return codes. Only ok indicates success. The codes invalid, fail and any unlisted
return code indicate a failed request.

When a device receives an unparsable message or an unexpected reply, it should respond by sending a #log
error message back to the client explaining the error. A client which receives a badly formed message or an
unexpected reply, should not send anything back to the device but should rather pass the error on to an external
logging mechanism or other third party. This intentional asymmetry is to ensure that message corruption does

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 10 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

not result in a flood of message between the device and the client. Device servers may ignore unexpected
inform messages.

Where message parameters are described as "human-readable" the contents of the parameter should be re-
stricted to plain ASCII text (printable ASCII plus the escape characters for horizontal tab, line feed and carriage
return).

Request and Reply Examples
?set-rate 5.1
!set-rate ok
?set-unknown-parameter 6.1
!set-unknown-parameter invalid Unknown_request.
?set-rate 4.1
!set-rate fail Hardware_did_not_respond.
?set-rate[123] 4.1
!set-rate[123] ok

Table 5: Example request and reply messages.

The message grammar is described next.

2.1 Message grammar

The message grammar is described in extended BNF [2] where:

• Optional items are enclosed in square brackets.

• Items repeating 0 or more times are suffixed with a *.

• Items repeating 1 or more times are suffixed with a +.

• Set difference is indicated by /. For example {1,2,3}/{2,3,4}= {1}.

• Alternative choices in a production are separated by the ’|’ symbol.

<message> ::= <type> <name> [<msgid>] <arguments> <eol>
<type> ::= "?" | "!" | "#"
<name> ::= alpha (alpha | digit | "-")*

<msgid> ::= "[" (digit / "0") digit* "]"
<whitespace> ::= (space | tab) [<whitespace>]

<eol> ::= newline | carriage-return
<arguments> ::= (<whitespace> <argument> <arguments>) | <whitespace> | ""
<argument> ::= (<plain> | <escape>)+

<escape> ::= "\" <escapecode>
<escapecode> ::= "\" | "_" | zero | "n" | "r" | "e" | "t" | "@"

<special> ::= backslash | space | null | newline | carriage-return | escape | tab
<plain> ::= character / <special>

Note that unlike in some earlier versions of the protocol, tabs are a valid form of whitespace and any amount
of whitespace can occur between arguments or before the end of the message. The characters listed in the

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 11 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

<special> production may not occur as raw characters in arguments but can be represented by a backslash
followed by the corresponding character in the <escapecode> production above. The escape character pair \@
unescapes to the empty string and is used to represent empty arguments. For example, the message #foo \@
represents an inform message with one parameter whose value is the empty string. Sending the \@ escape is
discouraged except in the case of sending an empty argument but parsers should handle it wherever it appears.

Lines that contain only whitespace should be ignored by devices and device clients even though they do not
constitue valid messages.

All string constants used in messages should be in lowercase including message names, log levels (Section 6),
sensor types (Section 7), and the ok, fail and invalid return codes.

2.2 Message Identifiers

Message identifiers were introduced in version 5 of the protocol to allow replies to be uniquely associated with
a particular request. If a client sends a request with a message identifier the server must include the same
identifier in the reply. Message identifiers are limited to integers in the range 1 to 231− 1 inclusive. It is the
client’s job to construct suitable identifiers – a server should not assume that these are unique.

Clients that need to determine whether a server supports message identifiers should examine the #version-connect
message returned by the server when the client connects (see Section 4). If no #version-connect message is
received the client may assume message identifiers are not supported.

2.3 Informs Associated with Requests

Where a request returns a list of values the standard mechanism for dealing with this is to return a list of inform
messages which precede the reply and for the reply itself to include just a success code and the number of items
returned. For example,

?sensor-list
#sensor-list drive.enable-azim Azimuth_drive_enable_signal_status \@ boolean
#sensor-list drive.enable-elev Elevation_drive_enable_signal_status \@ boolean
#sensor-list drive.dc-voltage-elev Drive_bus_voltage V float 0.0 900.0
!sensor-list ok 3

It is mandatory that informs which form part of a response to a request have the same message name as the
request (and reply) and that no other informs should share a name with a request. If the request contained a
message id each inform that forms part of the response should be marked with the original message id.

The requests defined in this document that use this technique are: ?help (Section 4), ?sensor-list and
?sensor-value (Section 7), and ?client-list (Section 8).

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 12 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

3 Datatypes [Required]

KATCP message arguments are sent as strings. It is often necessary to send other datatypes to and from a
device. In order to do so, this data must be encoded into strings before being sent and decoded when it is
received. This section defines formats for a number of common datatypes. Table 6 describes how each of the
specified types should be formatted. After formatting, parameters will be escaped (as described in the message
grammar) when the message string to be sent is constructed.

Type Format Example
integer as formatted by printf("%d", i)

in C99
123, -546

float as read by C99’s strtof(s),
strtod(s) and strtold(s) func-
tions, but without the optional
leading spaces and only in decimal
format

-1.234e-05, 1.7

boolean True should be formatted as 1 and
False as 0.

1, 0

lru (deprecated) one of the values nominal or error nominal, error
timestamp XXXX.YYYY where XXXX is an

integer representing seconds since
the Unix epoch in the UTC timezone
and the optional .YYYY is the re-
maining fraction of a second. Note
change from milliseconds to seconds
in KATCP version 5.

1222180721660213,
1222195721660237.723,
1222195721660237.85

discrete one of a defined set of values specific
to the type

initialise, operate, maintain

address either an IPv4 address or an IPv6 ad-
dress optionally followed by a colon
and a decimal port number. If an
IPv4 address, the address part should
be in dotted-decimal form (as for-
matted by POSIX inet_ntop). If
an IPv6 address, the address part
should be in resource identifier nota-
tion (the result of POSIX inet_ntop
enclosed in square bracket).

192.168.1.1:4000, 127.0.0.1,
[2001:0db8:85a3:0000:
0000:8a2e:0370:7334]:4000,
[::1], [::1]:80

string character bytes (with no implied
character encoding)

abc, foo

Table 6: Formatting for parameter types.

Notes

• The lru (line replaceable unit) datatype is intended to represent part of a device which may be either
operational (nominal) or non-operational (error). The lru datatype was deprecated in version 5 and
existing instances should be migrated to boolean values.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 13 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

• Although KATCP supports sending arbitrarily large integers and floats, those implementing devices
should note (in any interface documentation) instances where arguments that cannot be represented as 32
bit integers or floats are expected.

• Although timestamps may have arbitrary accuracy, devices are free to store only as much of a timestamp
as is relevant to them.

• Representing timestamps in milliseconds as done in versions of KATCP prior to version 5 will require
integers larger than 32 bits, but even those devices that represent timestamps internally in seconds (and
merely format them to milliseconds when constructing messages for KATCP prior to version 5) should
be aware that the lifespan of devices may extend past 2038 when the number of seconds since the Unix
epoch will exceed the maximum integer that can be represented with 32 bits.

• In versions of KATCP prior to version 5, timestamps were specified in milliseconds; newer versions use
the SI unit (seconds), and should always be in the UTC timezone. In versions of KATCP prior to version
4, timestamps were not allowed to contain the fractional part.

• If the character data contained in a string type argument should be interpreted with a specific encoding,
those implementing the device should note this in any interface documentation for the device. Devices
are permitted to return non-character data in string sensors, but this is not encouraged.

• If a value may be either an IPv6 or an IPv4 address the two may be distinguished by the leading square
bracket present in IPv6 addresses.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 14 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

4 Core Messages [Required]

The requests and informs detailed in this section deal with connecting to a device, halting it or restarting it
and querying it for some basic information about itself. KATCP devices are required to implement all of the
messages in this section.

4.1 Requests

If a request below does not have a corresponding reply message, then the reply message has just one argument
(ok) if the request was successful and just two arguments (a failure code and an error message) if the request
was unsuccessful.

REQUEST halt ?halt should trigger a software halt. It is expected to close the connection and put the
software and hardware into a state where it is safe to power down. The reply message should be sent just
before the halt occurs.

REQUEST help ?help [name]

name is an optional request name

Before sending a reply, the help request will send a number of #help inform messages. If no name
parameter is sent the help request will return one inform message for each request available on the device.
If a name parameter is specified, only an inform message for that request will be sent. On success the
first reply parameter after the status code will contain the number of help inform messages generated by
this request. If the name parameter does not correspond to a request on the device, a reply with a failure
code and message should be sent.

INFORM help #help name description

name the name of a request

description a human-readable description of what the request does, its parameters and return values.

Although the description is not intended to be machine readable, the preferred convention for describing
the parameters and return values is to use a syntax like that seen on the right-hand side of a BNF produc-
tion (as commonly seen in the usage strings of UNIX command-line utilities and the synopsis sections
of man pages). Brackets ([]) surround optional arguments, vertical bars (|) separate choices, and ellipses
(...) can be repeated.

REPLY help !help ok numCommands

numCommands number of inform messages generated in response to the request.

REQUEST restart ?restart should trigger a software reset. It is expected to close the connection, reload the
software and begin execution again, preferably without changing the hardware configuration (if possible).
It would end with the device being ready to accept new connections again. The reply should be sent before
the connection to the current client is closed.

REQUEST watchdog ?watchdog may be sent by the client occasionally to check that the connection to the
device is still active. The device should respond with a success reply if it receives the watchdog request.

REQUEST version-list ?version-list Before sending a reply the ?version-list command will send a
series of #version-list informs. The list of informs should include all of the roles and components
returned via #version-connect but may contain additional roles or components. New in version 5.0.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 15 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

INFORM version-list #version-list name version [build-state | serial-number]

name the name of the role or component the version information applies to.

version a string identifying the version of the component. Individual components may define the struc-
ture of this argument as they choose. In the absence of other information clients should treat it as
an opaque string.

build-state | serial-number a unique identifier for a particular instance of a component. This should
change whenever the component is replaced or updated.

REPLY version-list !version-list ok numInforms

numInforms number of inform messages generated in response to the request.

4.2 Asynchronous Informs

The inform messages listed here are not sent in response to a request, but rather in response to events on
the device. The events that should trigger the sending of each type of inform are described along with the
description of the inform message parameters below.

INFORM disconnect #disconnect message

message is a message describing the reason for disconnection

Sent to the client by the device shortly before the client is disconnected. In the case where a client is being
disconnected because a new client has connected (see Section 9 on single client devices), the message
should include the IP number and port of the new client for tracking purposes. E.g. #disconnect
New_client_connected_from_192.168.1.100:24500.

INFORM version-connect #version-connect name version [build-state | serial-number] Sent
to the client when it connects. These inform messages use the same argument format as #version-list
and all roles and components declared via #version-connect should be included in the informs sent in
response to ?version-list. Three of these informs have special meanings:

#version-connect katcp-protocol <major>.<minor>[-<flags>] This inform is required and spec-
ifies the version of the guidelines supported. The major and minor version numbers are integers.
The flags are a list of unique characters. Each character describes a supported option or feature.
Current flags are:

M the server supports multiple clients (see Section 8). Absence of this flag indicates that only a
single client is supported (see Section 9).

I the server supports message identifiers (see Section 2).
T the server provides request timeout hints via ?request-timeout-hint (see Section 5.1).
B the server supports setting sensor sampling in bulk via ?sensor-sampling (see Section 7.1).

If there are no flags the -<flags> part of the version string should be omitted. Later versions of
the protocol may define additional flags. E.g. #version-connect katcp-protocol 5.0-MI

#version-connect katcp-library <version> <build-state> This inform is optional and spec-
ifies the version and build state of the library being used by a server to implement these guidelines.
No specific format is required for the version number or build state arguments although clients may
use them to identify particular implementations of these specifications. E.g. #version-connect
katcp-library katcp-python-0.3 katcp-python-0.3.1-py2

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 16 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

#version-connect katcp-device <api-version> <device build-state> This inform is optional
and specifies the API version and build state of the server to which the client is connected. This
replaces the deprecated #version and #build-state informs from version 4 of the protocol.

Additional #version-connect informs may be sent by a server. New in version 5.

INFORM interface-changed #interface-changed [
"sensor-list" | "request-list" | ("sensor" | "request" <change specification>)]
<change specification> ::= <name> "added" | "removed" | "modified"

Only required for dynamic devices, i.e. devices that may change their katcp interface during a connection.
Sent to the client by the device to indicate that the katcp interface has changed. Passing no arguments
with the inform implies that the whole katcp interface may have changed. The optional parameters allow
more fine grained specification of what changed:

#interface-changed sensor-list The list of sensors has changed (i.e. one or more sensors have
been added, deleted or modfied), but requests are unchanged.

#interface-changed request-list The list of requests has changed (i.e. one or more requests have
been added, deleted or modified), but sensors are unchanged.

#interface-changed sensor <name> added|removed|modified A single sensor with name <name>
was added, removed or modified.

#interface-changed sensor <name> added|removed|modified A single sensor with name <name>
was either added, removed or modified, depending on the last parameter.

#interface-changed request <name> added|removed|modified A single request with name <name>
was either added, removed or modified, depending on the last parameter.

message is a message describing the reason for disconnection

4.2.1 Deprecated Asynchronous Informs

The following asynchronous informs were present in earlier versions of the protocol. Clients may wish to
continue to support these if they wish to support older versions of the protocol.

INFORM build-state #build-state name-major.minor[(a|b|RC)number]

name is the name of the software running on the device

major.minor[(a|b|RC)number] is the version number of the device software

A #build-state inform should be sent to a client on connection and should define the build version of
the device software. E.g. #build-state antennasimulator-3.5a3. Deprecated in version 5.

INFORM version #version api-major.minor

api is the name of the API implemented by the device, e.g. antenna, dbe

major and minor describe a version number for the interface which should be defined in the ICD.

A #version inform should be sent to a client on connection and should define the version of the device
API. This allows the client to perform a basic sanity check that it and the device are using compati-
ble versions of the API. The minor version number should be incremented when the API changes in a
backwards compatible way (including the adding new sensors and requests or altering existing requests
to accept wider ranges of options). The major number should be incremented if the API changes in a

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 17 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

non-backwards compatible way (including removing commands or any change that would make use of a
request from the previous API major version fail). E.g. #version antenna-1.0. Deprecated in version
5.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 18 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

5 Additional Messages [Optional]

The requests and informs detailed in this section provide additional information or utility. KATCP devices are
not required to implement any of the messages in this section. However, if they advertise the protocol flag
corresponding to one of these messages, then they must implement it.

5.1 Requests

If a request below does not have a corresponding reply message, then the reply message has just one argument
(ok) if the request was successful, and just two arguments (a failure code and an error message) if the request
was unsuccessful.

REQUEST request-timeout-hint ?request-timeout-hint [name]

name is an optional request name

KATCP requests should generally take less than 5 seconds to complete, but some requests are unavoid-
ably slow. This results in spurious client timeout errors. This request provides timeout hints that clients
can use to select suitable request timeouts.

Before sending a reply, this request will send a number of #request-timeout-hint inform messages.
If no name parameter is sent the request-timeout-hint request will return one inform message for each
request available on the device that has a timeout hint available. If a name parameter is specified, only an
inform message for that request will be sent. In the case of a name being specified, a timeout value of zero
may be reported, which indicates that there is no suggested timeout for the message. On success, the first
reply parameter after the status code will contain the number of request-timeout-hint inform messages
generated by this request. If the name parameter does not correspond to a request on the device, a reply
with a failure code and message will be sent.

New in version 5.1, and only available if the protocol flag T is reported by the server.

INFORM request-timeout-hint #request-timeout-hint name suggestedTimeout

name the name of a request

suggestedTimeout Suggested request timeout in seconds for the request. If suggestedTimeout is zero (0),
no timeout hint is available.

REPLY request-timeout-hint !request-timeout-hint ok numHints

numHints number of inform messages generated in response to the request.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 19 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

6 Logging [Required]

Devices should whenever possible send log messages to connected clients using the #log inform. Which
log messages should be reported is controlled through the log-level request. Devices may also log messages to
some other logging mechanism in order to assist in troubleshooting when no client is connected. This secondary
logging mechanism might be to a local standard directory (e.g. /var/log on Linux), or to a network logging
service, or to some configurable language-specific logging library (for example, log4j in Java or the standard
logging module in Python).

Note that even for multi-client devices, it is envisioned that the logging level will be a setting global to the
device. If one client sets the logging level, all clients will receive log informs as dictated by the new logging
level. Unlike sensor sampling (see Section 7), the logging level is expected to persist when clients disconnect
and then later reconnect.

6.1 Standard Logging Levels

After an investigation into the logging levels used for standard logging implementations (log4j, logging for
Python and syslog) the set of logging levels shown in Table 7 was chosen for the KATCP protocol. Definitions
and expected content for each of the logging levels are included in the table as a guideline for developers to
decide on what information should be logged at each level. When logging has been set to a particular level, all
higher levels will also be reported. For example when the logging level has been set to INFO, the logging levels
INFO, WARN, ERROR and FATAL will all need to be reported. The higher the logging level that has been set, the
less information should be reported by the device.

6.2 Requests

REQUEST log-level ?log-level [level]

level is one of (off > fatal > error > warn > info > debug > trace > all) and all levels greater than or equal
to the specified level should be reported. See Table 7 for a full description of the levels.

If the level parameter is omitted, then the log level is left unchanged but the current level is still returned
in the reply.

REPLY log-level !log-level ok level The level returned is the new log level (or the current log level if
no level was specified).

6.3 Asynchronous Informs

INFORM log #log level timestamp name message

level is the log level of the message
timestamp was timestamp_ms is a count in seconds since the Unix epoch in the UTC timezone (for-

matted as described in Section 3; note the change from milliseconds to seconds in KATCP version
5). It is recommended that log timestamps are of at least millisecond precision, i.e. three significant
digits after the decimal point

name is the name of the logger using a dotted notation. This allows a virtual hierarchy of loggers to be
represented.

message is the actual message string. Conventions could be used to identify file names and line numbers
etc as appropriate.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 20 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Log Level OFF
Definition OFF is the highest possible logging level and is intended to turn logging off.

Expected Content No information. Devices should never log messages directly to the OFF logging level.
Log Level FATAL
Definition The device has failed. There is no workaround. Recovery is not possible.

Expected Content The logged message should capture as much system state information as possible in order to assist with
debugging the problem. Logging information at this level should not directly impact the performance
of the device.

Log Level ERROR
Definition An error has occurred. A function or operation did not complete successfully. A workaround may be

possible. The device can continue, potentially with degraded functionality. Logging information at this
level should not directly impact the performance of the device.

Expected Content The error message should capture detailed information relating to the event that has occurred.
Log Level WARN
Definition A condition was detected which may lead to functional degradation (e.g. an anomaly threshold has been

crossed), but the device is still fully functional. Logging information at this level should not directly
impact the performance of the device.

Expected Content The warning message should capture the information relating to what functional degradation may occur
and list thresholds that have been exceeded.

Log Level INFO
Definition This level of logging should give information about workflow at a coarse-grained level. Information at

this level may be considered useful for tracking process flow. Logging information at this level should
not directly impact the performance of the device.

Expected Content The information message should capture information relating to the operation that has completed.
Log Level DEBUG
Definition Verbose output used for detailed analysis and debugging of a device. Logging information at this level

may impact the performance of the device.
Expected Content This level of logging should show workflow at a fine-grained level. Information relating to parameters,

data values and device states should be reported.
Log Level TRACE
Definition Extremely verbose output for detailed analysis and debugging of a device. Logging information at this

level may impact the performance of the device.
Expected Content This level of logging should show function call stacks and provide a high level of debug information.

Log Level ALL
Definition ALL is the lowest possible logging level and is intended to turn on all logging.

Expected Content Logging will occur at the most detailed level. Devices should never log messages directly to the ALL
logging level.

Table 7: Standard logging level definitions

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 21 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

7 Sensors [Required]

Sensors provide a means for a device to send monitoring data to the clients connected to it. Each sensor has a
name and a type.

A sensor name should be unique within the context of a particular device and should preferably not contain
any reference to the name of the device. For example, "pressure" is preferred to "device3.pressure". Sensor
names may use a dotted notation to indicate a hierarchical grouping of sensors. The only purpose served by this
dotted notation is to hint to users of the device how sensors might be logically arranged. E.g. "pump.pressure",
"pump.voltage", "pump.current". While underscores (_) are valid in sensor names, the use of dashes (-) are
preferred. E.g. “cold-chamber”. The only valid characters for use in sensor names are Latin letters (lower-case
is preferred), digits, dots, dashes and underscores. Specifically: a-z A-Z 0-9 . - _

The sensor type is one of the datatypes listed in Section 3.

The value of a sensor at any given time is conceptually a triple containing the timestamp of the reading, the
status of the reading and the value of the reading itself. This double meaning of the word "value" can be
confusing but it is usually clear from the context whether the full triple or just the value of the reading is
intended. The full list of possible sensor value statuses is given in Table 8. For some statuses a correct value
for the reading may not be available (because no valid value could be read). These statuses are marked in the
table as not having a valid value.

Status Name Value Valid Description
unknown No The sensor is in the process of being initialized and no value has yet been

seen. Sensors should not remain in this state indefinitely. Clarified in version
5.

nominal Yes The sensor reading is within the expected range of nominal operating values.
warn Yes The sensor reading is outside the nominal operating range.
error Yes The sensor reading indicates a critical condition for the device.
failure No Taking a sensor reading failed and seems unlikely to succeed in future with-

out maintenance.
unreachable No The sensor could not be reached. This should only be used by a server that

is proxying the sensor for another KATCP device. A sensor that is read by
the server from a source other than another KATCP device should not be set
to this status. New in version 5.

inactive No The sensor is inactive; while the sensor does not provide a valid value, this
status does not represent a failure condition. It could indicate that optional
sensing hardware is not connected; in multi-mode devices it may indicate
that a particular sensor is not applicable to the current mode of operation.

Table 8: Sensor status definitions.

A client may obtain the list of sensors using ?sensor-list, which returns the device name and type and some
additional information including the units of measurement, a description of what the sensor records and a few
extra parameters which are type-dependent (see the description of #sensor-list for details).

A client can poll the current value of a sensor, or of all sensors, using ?sensor-value. An alternative means
for obtaining updates is sensor sampling, which is described below.

7.1 Sensor Sampling

Sensor sampling provides a means for each client to request that the device send it updates of a sensor value. A
sensor sampling strategy determines the conditions under which updates are sent. The complete list of strategies

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 22 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

is given in Table 9. Updates are sent to the client using the #sensor-status message.

After a client connects to a device, no #sensor-status messages should be sent to it until it requests them
using ?sensor-sampling. This is true for both single-client (see Section 9) and multi-client (see Section 8)
devices.

For all strategies except the none strategy a #sensor-status message should be sent immediately after a
strategy is set in on a sensor to ensure that the client requesting the strategy immediately receives a value. This
is especially important for strategies where there may be an undetermined delay between updates.

7.2 Requests

REQUEST sensor-list ?sensor-list [name]

name is an optional sensor name

Before sending a reply, the sensor-list request will send a number of sensor-list inform messages. If no
name parameter is sent the sensor-list request will return a sensor-list inform message for each sensor
available on the device. If a name parameter is specified, only an inform message for that sensor will
be sent. On success the first reply parameter after the status code will contain the number of inform
messages generated by this request. If the name parameter does not correspond to a sensor on the device,
a fail reply should be sent.

INFORM sensor-list #sensor-list name description units type [param [...]]

name is the name of the sensor in dotted notation. This notation allows a virtual hierarchy of sensors to
be represented; e.g. a name might be rfe0.temperature.

description is a human-readable description of the information provided by the sensor.

units is a human-readable string containing a short form of the units for the sensor value. May be blank
if there are no suitable units. Examples: "kg", "packet count", "m/s". Should be suitable for display
next to the value in a user interface.

type is the name of one of the datatypes described in Section 3.

params are determined by the type:

integer [nominal-min nominal-max [warn-min warn-max]] Prior to version 5 min and max
values indicating the range (inclusive) were required (as two separate arguments). From ver-
sion 5 these values are deprecated and indicate only the expected range of valid values. Clients
should accept values outside this range. See note below for the exact meaning of the parame-
ters.
If a device expects to return values outside the range of −231 to 231−1 for a particular sensor
this should be documented in the device’s interface
description.

float [nominal-min nominal-max [warn-min warn-max]]Prior to version 5 min and max val-
ues indicating the range (inclusive) were required (as two separate arguments). From version 5
these values are deprecated and indicate only the expected range of valid values. Clients should
accept values outside the range. See note below for the exact meaning of the parameters.

discrete list of available options (as multiple arguments)
boolean, lru, timestamp, address, string no additional parameters (note that the lru type is dep-

recated).

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 23 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Strategy Name Required? Parameters Description
auto required - Report the sensor value when convenient for

the device. This should never be equivalent to
the none strategy.

none required - Do not report the sensor value.
period optional period Report the value approximately every period

seconds. The period will be specified using
the timestamp data format. May be imple-
mented for sensors of any type. Note change
from milliseconds to seconds in KATCP ver-
sion 5.

event optional - Report the value whenever it changes. May
be implemented for sensors of any type. For
float sensors the device will have to deter-
mine how much of a shift constitutes a real
change.

differential optional difference Report the value when it changes by more than
difference from the last reported value. May
only be implemented for float and integer
sensors. The difference is formatted as a
float for float sensors and an integer for inte-
ger sensors.

event-rate optional shortest-period
longest-period

Report the value whenever it changes or if
more than longest-period seconds have
passed since the last reported update. How-
ever, do not report the value until at
least shortest-period seconds have passed
since the last reported update. The be-
haviour if shortest-period is greater than
longest-period is undefined. New in ver-
sion 5.

differential-rate optional difference
shortest-period
longest-period

Report the value whenever it changes by
more than difference from the last reported
value or if more than longest-period sec-
onds have passed since the last reported up-
date. However, do not report the value un-
til at least shortest-period seconds have
passed since the last reported update. The be-
haviour if shortest-period is greater than
longest-period is undefined. May only be
implemented for float and integer sensors.
The difference is formatted as a float for
float sensors and an integer for integer sensors.
New in version 5.

Table 9: Sampling strategy definitions. Required strategies must be implemented for all sensors.

Note that the specifying the optional error and warning ranges for integer or float sensors does
not relieve the device from setting the correct status on sensors itself; it is only meant to provide

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 24 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

extra information to users of a device. The device exposing the sensor must ensure that the way it
reports sensor status is consistent with the ranges reported by the #sensor-list inform. If it is not
possible to do so, the ranges should be omitted.
Any sensor value (assuming the sensor status is not unknown, failure, unreachable or inactive) x :
nominal-min ≤ x ≤ nominal-max should be accompanied by a nominal sensor state. If only
nominal-min and nominal-max are specified, Values outside this range may be accompanied
by warning or error states. If warn-min and warn-max are also specified, values of x such that
warn-min ≤ x < nominal-min or nominal-max < x ≤ warn-max should be accompanied by a
warning status, while values outside these ranges should be be accompanied by an error status.

REPLY sensor-list !sensor-list ok numSensors where

numSensors is the number of sensor-list informs sent.

REQUEST sensor-sampling ?sensor-sampling name[,name]* [strategy [param ...]]

name is the name of a single sensor. For bulk setting a comma-separated list of many sensor names can
be used (see notes below).

strategy specifies a sampling strategy and is one of the strategies described in Table 9. If no strategy is
specified, the current strategy and parameters are left unchanged and just reported in the reply. This
querying of a strategy is only applicable when specifying a single sensor name, not a list of names.

params are determined by the strategy as described in Table 9.

Since version 5.1 there is an option to set sampling strategies in bulk. This is available if the protocol
flag B is reported by the server. It is useful when setting the sampling strategies on KATCP devices with
a large numbers of sensors. For example, a device with 10k sensors could take more than a minute to
configure if requests are sent one at a time for every sensor, and the roundtrip time is 6 ms. Pipelining
the individual requests would help with network latency, but some KATCP server implementations might
not support pipelining effectively. Setting the strategies in bulk is beneficial as it only requires a single
roundtrip, and less data is sent and received. The overhead of processing fewer messages may also reduce
overall CPU load on both client and server. In order to use this mode, send the request with the names
as a comma-separated list like sensor-1,sensor-2,sensor-3 and then the strategy that is applicable
to all of those sensors. If there are different strategies for some groups of sensors, then send a separate
request for each group.

Attempting to set the strategies for multiple sensors leads to additional failure modes: if at least one of
the sensors does not exist, or if the requested strategy is not applicable to at least one of the sensors.
The implementation is atomic (either the strategy gets set for all or for none). The request only indicates
success if the required strategy was set on all the named sensors.

REPLY sensor-sampling !sensor-sampling ok name[,name]* strategy [param ...]

name is the name of a single sensor. For bulk setting the comma-separated list of many sensor names
will be returned (see notes above).

strategy is the name of the new sampling strategy (or the current strategy if the strategy was not updated)

params are the new sampling strategy parameters (or the current parameters if the strategy was not
updated)

REQUEST sensor-value ?sensor-value [name]

name an optional sensor name.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 25 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Before sending a reply, the sensor-value request will send a number of sensor-value inform messages. If
no name parameter is sent the sensor-value request will return a sensor value for each sensor available on
the device using a set of sensor-value inform messages. If a name parameter is specified, only an inform
message for that sensor will be sent. On success the first reply parameter after the status code will contain
the number of inform messages generated by this request. If the name parameter does not correspond to
a sensor on the device, a fail reply should be sent.

INFORM sensor-value #sensor-value timestamp numSensors [[name status value] ...]

timestamp is the time at which the sensor value was read (formatted as a timestamp; note the change
from milliseconds to seconds in KATCP version 5).

numSensors is the number of sensors reported in this message, and is followed by a corresponding
number of repeats of [name status value].

name corresponds to one of the sensors

status is one of unknown, nominal, warn, error, or failure.

value is a value appropriate to the sensor’s type.

The sensor-value inform message has the same structure as the asynchronous sensor-status inform except
for the message name. The message name is used to determine whether the sensor value is being reported
in response to a sensor-value request or as a result of sensor sampling. See section 3 for a description of
how the value parameters for different types should be formatted. Note that the name, status and value
are three seperate message arguments.

REPLY sensor-value !sensor-value ok numInforms

numInforms is the number of sensor-value informs sent.

7.3 Asynchronous Informs

INFORM sensor-status #sensor-status timestamp numSensors [[name status value] ...]

timestamp is a count in seconds since the Unix epoch (formatted as described in Section 3; note the
change from milliseconds to seconds in KATCP version 5).

numSensors is the number of sensors reported in this message, and is followed by a corresponding
number of repeats of [name status value].

name corresponds to one of the sensors

status is one of unknown, nominal, warn, error, or failure.

value is appropriate for the sensor type

A sensor-status inform should be sent whenever the sensor sampling set up by the client dictates. The
sensor-status inform message has the same structure as the sensor-value inform except for the message
name. The message name is used to determine whether the sensor value is being reported in response to
a sensor-value request or as a result of sensor sampling. See section 3 for a description of how the value
parameters for different types should be formatted.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 26 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

8 Multi-client [Optional]

KATCP-compliant devices may either support multiple simultaneous clients (in which case they should behave
as described in this section) or only a single client (in which case they should follow Section 9). The multi-
client option is the preferred option for devices capable of implementing it as it provides a means of monitoring
a device while it is being controlled on a separate connection.

Multi-client devices need not make any arrangements to share control – they may simply accept commands
from all clients. Clients should arrange to handle shared control among themselves. It is expected that usually
a single client will have primary control and that other clients will only monitor the device, although this
arrangement is not required by KATCP.

To assist clients in tracking what other clients are connected a client-list request is provided so the current
list of connected clients can be retrieved. A client-connected inform is sent to each connected client when
a new client is accepted. Both these messages are described in more detail later in this section.

Replies to requests should be sent only to the client that made the request. Inform messages generated as part
of a reply should also only be sent to the client that made the request.

Whether asynchronous informs are sent to multiple clients is determined by the type of inform. Of the messages
described in this document only #log and #client-connected are sent to multiple clients. All others are sent
to the single client associated with the event that triggered the inform. For #build-state, #version and
#disconnect it is the client connecting or being disconnected. For #sensor-status it is the client that con-
figured the sensor sampling strategy. The #log informs should be sent to all clients. The #client-connected
informs should be sent to all clients except the one that has just connected. These behaviours are summarized
in Table 10.

Devices should maintain one sensor sampling strategy per sensor per client and send sampled values only to
the client that set up the sampling strategy.

Inform Sent to
build-state Client that is connecting.
client-connected All clients except the one that is connecting.
disconnect Client that is about to be disconnected.
log All clients.
sensor-status Client that configured the relevant sensor sampling.
version Client that is connecting.

Table 10: Summary of which clients asynchronous informs should be sent to.

8.1 Requests

REQUEST client-list ?client-list Before sending a reply, the client-list request will send a client-list in-
form message containing the address of a client for each client connected to the device, including the
client making the request.

INFORM client-list #client-list addr

addr The address and port the client is connected from as a single human-readable string parameter
formatted using the address datatype (see Section 3).

REPLY client-list !client-list ok numClients

numClients The number of #client-list inform messages sent by the corresponding request.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 27 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

8.2 Asynchronous Informs

INFORM client-connected #client-connected msg

msg A description of the new client. It should include the address and port the new client connected
from.

The #client-connect inform should be sent to all other clients when a new client is accepted.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 28 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

9 Single-client [Optional]

KATCP-compliant devices may either support just a single client (in which case they should behave as described
in this section) or multiple simultaneous clients (in which case they should follow Section 8). The multi-client
option is the preferred option for devices capable of implementing it. The single-client option is retained for
backwards compatibility with earlier versions of the protocol and to support devices implemented on minimal
hardware.

The single-client specification is as far as possible intended to follow the behaviour specified for multi-client
devices in the case where only a single client is connected at any one time.

If a second client attempts to connect to a single-client device, it must send the first client a #disconnect inform
and disconnect the first client. The message parameter of the #disconnect inform should explain that a new
client has connected and include the address and port of the new client (for debugging and logging purposes).

Single-client devices should not implement any of the requests or informs described in the section on multi-
clients (Section 8) in order to allow the two types of devices to be easily distinguished.

For sensor sampling, single-client devices need only maintain one sensor sampling strategy per sensor. When
a new client connects, all sampling strategies should behave as if set to the none strategy.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 29 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

10 Device Configuration [Deprecated]

This module was deprecated in protocol version 5.

It is recommended that should a device provide a means for a client to configure it that this be done using a
configure request which is outlined below. A client may need to use multiple configure requests to set
different device parameters.

REQUEST Configure ?configure param ...

params are custom for a device. For example, the first parameter might be the name of an option to set
and the second might be value of the option, as in ntp ntpserver.localdomain.

The reply arguments are either just ok if the configuration described by params was accepted or a failure
code and a message if setting the configuration failed.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 30 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

11 State and Mode [Deprecated]

This module was deprecated in protocol version 5.

More complex devices may wish to provide information to clients about their current state or mode. It is
recommended that this be done using sensors named state and mode, which should be of the discrete type.

If a device wishes to allow clients to explicitly switch between modes, this should be done using a mode request
as described below.

REQUEST mode ?mode name

mode name of the mode to change too. Should be one of the mode values reported by the mode sensor.

This request should trigger a change to the mode of the specified name. The list of modes will be device-
specific but should be a subset of the possible values of the mode sensor. The reply is just ok if the mode
change succeeded or a failure code and message if the request failed.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 31 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

A KAT Devices

This appendix applies only to devices being implemented for the KAT project. Others may find it useful
background reading.

KAT is a project to build a radio telescope in the Karoo region of South Africa. Such a radio telescope contains
many hardware devices that need to be monitored and controlled from a central location. The solution adopted
by the KAT project attempts to standardize on the protocol described in this document for the interfaces with
devices.

The KAT monitoring and control system includes the concept of device proxies. Proxies are the clients of
devices. Their role is to shield the KAT software system from the details of device control. This may be
necessary for a number of reasons including:

• a device might not properly support KATCP (for example, it may be a legacy device)

• the device might implement the single-client KATCP option (in which case a proxy provides a means for
multiple clients to connect)

• it may be convenient to aggregate several devices into one virtual device

• the level of control provided by the device may be deemed too primitive for use by the rest of the system
(in which case the proxy represents a higher-level interface to the device functionality)

Although the proxies provide a level of standardization within the KAT monitoring and control system, there
are distinct advantages to having some degree of standardization at the device level too as this will:

• promote reuse of communications libraries

• reduce confusion caused by switching between widely varying protocols

• make it simpler to ensure that the device protocol satisfies KAT system requirements

A.1 Physical context

Figure 1 shows the physical context for a device within the KAT computing system. It can be seen that the pri-
mary communication is between the device and the proxy however there may also be interface/communication
with a DHCP server (for obtaining an IP address) and an NTP server (for synchronising the device time).

Details for each of the interfaces are provided in the sections below.

A.1.1 Device - DHCP Server

It is preferred that devices obtain an IP address from a DHCP server. Where this is not possible, devices should
use a static IP address. Devices that use a static IP address are strongly encouraged to make the IP address and
network address configurable. The KAT DHCP server will also provide devices that use it with the address of
the NTP server.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 32 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Figure 1: Context diagram showing relationship between the device and other system components.

A.1.2 Device - NTP Server

If a device uses an NTP server, it should receive the NTP server IP address either through DHCP or alternatively,
by allowing the NTP server IP to be configured by a client using the ?configure request (see the Device
Configuration module, section 10).

Devices are strongly encouraged to synchronise their local time from the NTP server to ensure that logging
timestamps are accurate. Logging timestamps should have at least millisecond precision, and should always be
specified in the UTC timezone.

Should a particular device require more accurate time synchronization than is available through NTP, the pro-
vision of a Precision Time Protocol (PTP) master or similar mechanism may be requested.

A.1.3 Device - Proxy

Communication between the proxy and the device uses the KATCP protocol described in the main part of this
document.

An example telnet session to an antenna device is shown below to illustrate the interaction between the antenna
proxy and an antenna device. Note that all requests (commands that begin with a question mark) are sent from
the proxy to the device. Reply (exclamation mark) and inform (hash) messages are sent from the device to
the proxy. Each block in the example corresponds either to a request (and its reply and associated informs) or
to a set of asynchronous inform messages sent by the device (such as the inform messages sent on connect or
the sensor status informs). Where the text is indented, line breaks have been introduced for readability in this
document. Ellipses indicate where lines have been left out of the transcript for brevity.

#build-state acs-1.0
#version acs-1.0
#mode idle
#state operate remote braked

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 33 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

?configure ntp-server 192.168.1.21
!configure ok

?help
#help configure Configure_NTP_server_IP_address.\nParameters:

_ntp-server_ip-address\nReturn:_success_ntp-server_|_message
#help halt Request_antenna_to_prepare_system_for_shutdown.

\nReturn:_success_[message]
...
!help ok 8

?sensor-list
#sensor-list acs.desired-azim Desired_azimuth_position Deg float -230.0 230.0
#sensor-list acs.mode ACS_operating_mode \@ discrete idle remote-point stow

timeout-stow local-drive access-feed error
...
!sensor-list ok 52

?sensor-sampling acs.mode period 2000
!sensor-sampling ok acs.mode period 2000

#sensor-status 514229978 1 acs.mode nominal idle
#sensor-status 514231988 1 acs.mode nominal idle
#sensor-status 514233998 1 acs.mode nominal idle
#sensor-status 514236007 1 acs.mode nominal idle

?sensor-sampling acs.mode none
!sensor-sampling ok acs.mode none

?watchdog
!watchdog ok

A.2 Device Start-up and Configuration

Regardless of the mechanism used to allocate an IP address to the device, a central configuration server will
be aware of what IP address a device will use. This information is used to ensure that a suitable proxy is
running and configured with the address and port for connecting to the device. The proxy will attempt to
retry connecting to the device periodically until the connection succeeds. Therefore, it is unimportant which
component is started first.

A device may wait until the proxy configures it (see the Device Configuration module, section 10) before
completing initialisation and changing to an operating state. The exact configuration of the start-up parameters
is specific to each type of device. Note that a device should be responsive on the connection even prior to being
configured.

A.3 Timestamps and Leap Seconds

It is suggested that devices implement timestamps internally using 64 bit integers counting the number of
milliseconds since the Unix epoch in the UTC timezone. Representing the time using a 32 bit integers counting

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 34 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

the number of seconds since the epoch risks overflowing the count in 2038.

NTP provides a mechanism for distributing details of leap seconds in the 24 hours preceding the time of taking
effect. What is required is that the NTP server which is slaved to a time source is aware of the leap seconds so
that it can distribute them. Our NTP server will get absolute time from GPS which does provide a mechanism
for taking leap seconds into account. We just need to ensure that each NTP client honours the leap second and
inserts it into Unix time.

A.4 Timed Command Execution

Some devices may wish to include a timestamp in some request parameters indicating that the action requested
be carried out at some future time. In these cases the request should be processed and a reply sent immediately,
even though the action required is yet to complete. Further requests should be processed and replied to even
while the action from the earlier command is awaiting execution. Such devices should be able to queue multiple
timestamped commands. The device developer and the KAT computing team should discuss and agree on
whether or not timed execution and queues are necessary for each particular device. Queues at devices are
generally discouraged because of the complexity of managing and debugging them.

The device queue size must be large enough so as to not impose any real- time requirements on the proxy.

It is proposed that, in order to simplify matters for such devices, the proxy may be required only to send
timestamped requests in increasing time order so that it is not necessary to perform any sorting in the device.

The device should provide a means of flushing the queue so that it can be returned to a known state if errors
occur.

All timestamped requests should accept the special value now in place of the timestamp. This value indicates
that the command should be performed as soon as possible.

A.5 Gaussian Integer Datatype

Internally the KAT correlator uses of Gaussian integers (complex numbers whose real and imaginary parts are
integers). Some correlator requests (e.g. the quantizer snapshot command) return values of this type. These
values are formatted as a real and, possibly, an imaginary part denoted by a trailing j. More precisely the gram-
mar is ([minus] digit+ (plus | minus) digit* j) | ([minus] digit* j) | ([minus] digit+)
where | denotes alternation, * zero or more elements and + one or more elements.

Sensors of this type are not expected.

A.6 Logging

When a proxy receives log messages from a device, the proxy is responsible for ensuring that these log mes-
sages are forwarded to KAT’s system-wide logging mechanism for storage and easy retrieval. As described
in Section 6, it may still be useful for the device to also log messages to a local logging mechanism to assist
debugging when a proxy or other device client is not connected.

If a language-specific logging library is used as a secondary logging mechanism and the language is Java, then
the log4j library is preferred. If the language is Python, the standard Python logging module is preferred.

Note that all log messages from INFO level up are expected to be made visible to the telescope operator and as
such should make sense in that context.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 35 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

A.7 Software Simulators

KAT device providers are also required to provide a software simulator which can be used during testing to
represent the device. The simulator will serve a number of purposes:

• Allows for early integration with the proxy. The advantage of this is that it highlights where there are
misunderstandings regarding the interpretation of the interface. It results in considerably smoother inte-
gration between the proxy and real device.

• Provides part of a test framework for verifying that the proxy software works correctly. As such it is a
vital part of the quality assurance process for the telescope software, particularly the proxy, and allows
more elaborate simulation systems to be built up.

• The provision of test hooks into the simulator provides a mechanism which supports the testing of the
proxy, but is potentially also useful for testing of the device software as it can be used to simulate failure
cases and the software response to them without having to generate real failures in hardware or wait for
them to occur in practice which may be some time after the system has been deployed.

The benefits described above are best achieved if as much of the code base as possible used for the real device
is present in the simulator. One way of achieving this is to ensure that in software all references to hardware
components are encapsulated behind functional APIs. As little code as possible should reside behind these
interfaces to interact with hardware. In the simulator implementation the simulation code only resides behind
these interfaces. All other code is common with the hardware device.

To increase the power of the simulator one can create test hooks within the stubbed sections to introduce various
effects such as out of range values (e.g. high temperatures), hardware failures (e.g. communications failures
to components) as well as potentially operator interactions if appropriate (e.g. the antenna has a local operator
control interface).

The simulator should be able to simulate the following functionality of the device:

Category Example Test Hooks
All device-specific commands
High priority device-specific sensors Normal values, out of range values
Initialisation sequence: build, version and configure
messages

Normal behaviour, hardware configuration errors

States and Modes behaviours Trigger error states and modes
Watchdog Trigger failure to make software unable to respond,

e.g. stuck in synchronous reads
Halt and Restart
Logging

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 36 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Figure 2: The testing framework connecting both to the standard interface and the test interface of the device
simulator.

Figure 3: Testing the proxy using the device simulator.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 37 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

B MeerKAT Sensors

This appendix applies to all devices and components being implemented for the MeerKAT project. The whole
appendix is new for version 5.

MeerKAT is the continuation of the KAT project described in the previous section. MeerKAT will have 64
dishes and Phase 1 is scheduled for completion by 2018. In order to support MeerKAT hierarchical failure and
health reporting and monitoring, the MeerKAT project specifies a set of common sensors to be provided by each
KATCP device/component to consolidate central monitoring and health/status reporting across all MeerKAT
KATCP devices/components.

In the discussion below the term "unit" is used to indicate any hardware device or software component imple-
menting a KATCP interface. A software component may be a proxy that proxies a number of KATCP devices.

B.1 Failure identification

The FMECA process for each unit will be done in conjunction with the MeerKAT Logistics Engineer and will
result in identifying all failures, their severities and detection methods, as well as effects and actions as required
by RAMLog [1]. The failures identified for each unit will be captured in the ICD (Interface Control Document)
of that unit.

FMECA failures apply to a specific replaceable component, and is therefore quite specific; a given malfunction
might be caused by several possible failures. As an example, a chiller may malfunction due to a loss of coolant;
loss of coolant may be due to several possible failures such as a punctured hose, a broken seal, a broken
pump, etc. Fully identifying a failure would typically require information not observable by the unit; a sensor
might detect an over-temperature or a loss of coolant, but finding the underlying failure would require human
inspection. As such, each detection method yielded by the FMECA process indicates several possible failures.

Since a unit cannot uniquely determine failures, it cannot be expected to report failures. Instead the FMECA
detection methods should be uniquely labeled and should be exposed as boolean KATCP failure detection
sensors, one sensor per detection method. Failure detection methods should be labeled as FDXXXX where XXXX
is a number that is unique amongst failure detections for a given class of device/component. The sensor should
be named fmeca.FDXXXX.

When no failure is detected the value of the failure detection sensor shall be false and the status nominal. If
a failure is detected the value shall be true, while the status should be assigned based on the FMECA severity
of the most critical failure identified as a possible trigger for the given failure detection. Severity implies the
system level severity of a single unit failure. Higher level aggregation of multiple unit failures may be done at
the CAM level.

FMECA severities are defined as in RAMLog [1]:

nominal No failure detected

minor Unscheduled maintenance or repair, as defined in RAMLog

marginal Mission degradation, as defined in RAMLog

critical Mission loss, as defined in RAMLog

catastrophic Death or system loss, as defined in RAMLog

FMECA severities cannot map directly to sensor status since there are more FMECA failure severities than
severity-related KATCP sensor statuses. The KATCP sensor status is only meant to be indicative – the final
determination of failure severity and required actions will be managed by RAMLog. FMECA failure severities
are mapped to sensor status as in table 11.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 38 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

Sensor Status FMECA Severity
warn minor or marginal
error critical or catastrophic
nominal no failure detected

Table 11: Mapping of sensor status to FMECA severity.

B.1.1 Failure Detection Logging

A KATCP log message (see section 6) should be generated on each change of failure status (including when
the failure is cleared). It should be logged as WARN (for severity minor or marginal), ERROR (for severity
critical) or FATAL (for severity catastrophic), depending on the severity of the failure, or as INFO when the
failure disappears. The log message for a failure detection should be formatted as:

fmeca.(FDXXXX) (FMECA_LEVEL) (DESCRIPTION)

where (FDXXXX) is the failure detection code, (FMECA_LEVEL) is the FMECA severity and (DESCRIPTION) is
a human readable description of the failure detection.

When a failure detection is cleared the log message should be:

fmeca.(FDXXXX) cleared (DESCRIPTION)

A possible KATCP log inform stream for failures on the archiver when it runs out of storage space may look
like this:

#log WARN 1322206610270 fmeca.FD0001_minor_Archive_storage_80%_full
#log WARN 1322207710222 fmeca.FD0002_marginal_Archive_storage_90%_full
#log ERROR 1322208813333 fmeca.FD0003_critical_Archive_storage_full

... Someone cleans out some archived data ...

#log INFO 1322207710222 fmeca.FD0003_cleared_Archive_storage_full

... Someone cleans out some more archived data ...

#log INFO 1322208813333 fmeca.FD0002_cleared_Archive_storage_90%_full

... Someone cleans out some more archived data ...

#log INFO 1322209921111 fmeca.FD0001_cleared_Archive_storage_80%_full

B.1.2 Failure Example

A subcontractor is supplying a Stargazing Widget device for MeerKAT. Following the FMECA process, the
following failures and criticalities were identified as in Table 12. The failure detection methods are show in
Table 13. It can be seen that there are fewer failure identification methods than there are failure modes, since
the sensors available on the unit cannot provide sufficient information to unambiguously resolve each failure
mode.

The Stargazing Widget would have two boolean failure sensors named fmeca.FD0001 and fmeca.FD0002. If
none of the detection methods conditions are satisfied, both sensors should have a value of false and status
nominal.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 39 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

LCN LCN Name FM Code Mode Description FMECA Severity
X013 Brass Tack F02 Brass Tack head sheared off minor
X015 Coolant Pump Hose F09 Coolant Hose leak marginal
X023 Flammables Hose F03 Hose rupture critical

Table 12: Failure Modes of Stargazing Widget identified by FMECA.

FD Code Detection Method Condition FM Code(s)
FD0001 Galaxy Angle Offset > 1 degrees F02
FD0002 Internal Relative Humidity > 50% F09, F03

Table 13: Failure Detection Methods of Stargazing Widget identified by FMECA.

If the condition of FD0001 is satisfied, sensor fmeca.FD0001 should have a value true. Since the only failure
possibly identified by FD0001 is F02 which according to Table 12 has an FMECA severity of minor, which
mapped using Table 11 indicates that the sensor status should be warn.

If the condition of FD0002 is satisfied, sensor fmeca.FD0002 should have a value of true. Since two possible
failures (F09 and F03) could trigger this detection, the most serious FMECA severity should be used to deter-
mine the sensor status; according to Table 12 F03 has an FMECA severity of critical and should be used to
determine the sensor status. Mapped using Table 11, the sensor status should be error.

B.2 Health sensors

Each MeerKAT KATCP unit must implement a unit level discrete KATCP health sensor device-status. The
possible values and statuses that this sensor may attain are described in Table 14. Note that this sensor is in
addition to any other standard required sensors that are defined by the preceding sections.

Sensor Value Sensor Status Description
ok nominal The unit is capable of full operation.

degraded warn The unit is capable of operation with reduced performance or reliability.
fail error The unit is unusable.

Table 14: Device Health Sensor Values.

The conditions used to determine the unit health should be determined at the same time as the FMECA analysis.
The unit vendor should determine these conditions in conjunction with the MeerKAT Logistics Engineer.

Multi-capability units should hierarchically map failure detection codes and device status per capability. Details
still to be determined in a later revision of this specification.

B.3 Other notes

Also note that:

• the MeerKAT subsystem specifications specify that sensors should be present for all LRUs and read-
backs for serial nos of all hardware.

• This KATCP guideline specifies sensors for versions and build states (see earlier sections)

• This KATCP guideline specifies sensors for versions and build states (see earlier sections)

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 40 of 41

Unrestricted
NRF-KAT7-6.0-IFCE/002

Revision: 5.1

C Applicable and Reference Documents

C.1 Applicable Documents

The following documents are applicable to the extent stated herein. In the event of conflict between the contents
of the applicable documents and this document, the applicable documents shall take precedence.

[1] D. Liebenberg. MEERKAT SYSTEM LOGISTIC ENGINEERING MANAGEMENT PLAN (LEMP).
Technical Report M0000-0000V1-02 MP, Rev 2, SKA/KAT, November 2010.

C.2 Related Documents

The following documents are referenced in this document. In the event of conflict between the contents of the
referenced documents and this document, this document shall take precedence.

[2] http://en.wikipedia.org/wiki/Backus-Naur_form.

2019/09/16
c©SARAO and NRF 2019

Unrestricted Page 41 of 41

NRF-KAT7-6.0-IFCE-002-Rev5-1
Final Audit Report 2019-09-17

Created: 2019-09-16

By: Tyrone van Balla (tvanballa@ska.ac.za)

Status: Signed

Transaction ID: CBJCHBCAABAAUzsSo8py0LDeQ0GDIjE88DM0lPTnqtl1

"NRF-KAT7-6.0-IFCE-002-Rev5-1" History
Document created by Tyrone van Balla (tvanballa@ska.ac.za)
2019-09-16 - 6:02:52 PM GMT- IP address: 169.0.141.225

Document emailed to Tyrone van Balla (tvanballa@ska.ac.za) for signature
2019-09-16 - 6:04:54 PM GMT

Document emailed to Jason Manley (jmanley@ska.ac.za) for signature
2019-09-16 - 6:04:54 PM GMT

Document emailed to Anton Joubert (ajoubert@ska.ac.za) for signature
2019-09-16 - 6:04:54 PM GMT

Document emailed to Simon Ratcliffe (simonr@ska.ac.za) for signature
2019-09-16 - 6:04:54 PM GMT

Document emailed to MWe(z (marc@ska.ac.za) for signature
2019-09-16 - 6:04:54 PM GMT

Document emailed to Sulayman Salie (ssalie@ska.ac.za) for signature
2019-09-16 - 6:04:54 PM GMT

Document e-signed by Tyrone van Balla (tvanballa@ska.ac.za)
Signature Date: 2019-09-16 - 6:05:10 PM GMT - Time Source: server- IP address: 169.0.141.225

Email viewed by Simon Ratcliffe (simonr@ska.ac.za)
2019-09-16 - 6:27:41 PM GMT- IP address: 66.249.93.210

Document e-signed by Simon Ratcliffe (simonr@ska.ac.za)
Signature Date: 2019-09-16 - 8:30:45 PM GMT - Time Source: server- IP address: 169.0.73.4

Email viewed by Jason Manley (jmanley@ska.ac.za)
2019-09-17 - 6:14:35 AM GMT- IP address: 196.24.39.242

Document e-signed by Jason Manley (jmanley@ska.ac.za)
Signature Date: 2019-09-17 - 6:15:00 AM GMT - Time Source: server- IP address: 196.24.39.242

Email viewed by Anton Joubert (ajoubert@ska.ac.za)
2019-09-17 - 6:38:44 AM GMT- IP address: 196.24.39.242

Document e-signed by Anton Joubert (ajoubert@ska.ac.za)
Signature Date: 2019-09-17 - 6:42:22 AM GMT - Time Source: server- IP address: 196.24.39.242

Email viewed by MWe(z (marc@ska.ac.za)
2019-09-17 - 7:49:01 AM GMT- IP address: 196.24.39.242

Document e-signed by MWe(z (marc@ska.ac.za)
Signature Date: 2019-09-17 - 7:55:21 AM GMT - Time Source: server- IP address: 196.24.39.242

Email viewed by Sulayman Salie (ssalie@ska.ac.za)
2019-09-17 - 10:14:36 AM GMT- IP address: 66.249.93.206

Document e-signed by Sulayman Salie (ssalie@ska.ac.za)
Signature Date: 2019-09-17 - 10:16:48 AM GMT - Time Source: server- IP address: 196.24.39.242

Signed document emailed to Sulayman Salie (ssalie@ska.ac.za), Jason Manley (jmanley@ska.ac.za), MWe(z
(marc@ska.ac.za), Tyrone van Balla (tvanballa@ska.ac.za), and 2 more
2019-09-17 - 10:16:48 AM GMT

		2019-09-17T03:16:51-0700
	Agreement certified by Adobe Sign

